Is

| — |

t Possible to Align Sequences in

Subquadratic Time?

Dynamic Programming takes O(n?) for global
alignment

Can we do better?
Yes, use Four-Russians Speedup

Partitioning Sequences into Blocks

Partition the n x n grid into blocks of size t x t

We are comparing two sequences, each of
size n, and each sequence is sectioned off
into chunks, each of length ¢

Sequence u = u,...u, becomes
|Uq.. Uy [Upq Uy o [Uiq- - U
and sequence v = v,...v, becomes
Vi VY [Vieq- Vol ov VeV

Partitioning Alignment Grid into Blocks

1

n/t

partition

> nlt

Block Alignment

Block alignment of sequences u and v:

1. An entire block in u is aligned with an entire
block in v

> An entire block is inserted
3. An entire block is deleted

Block path: a path that traverses every t x t
square through its corners

Block Alignment: Examples

valid invalid

Block Alignment Problem

Goal: Find the longest block path through an
edit graph
Input: Two sequences, u and v partitioned

into blocks of size t. This is equivalent to an
n X n edit graph partitioned into f x t subgrids

Output: The block alignment of u and v with
the maximum score (longest block path
through the edit graph

Constructing Alignments within Blocks

To solve: compute alignment score §;; for each
pair of blocks U qysq--- Uil @ND Vi qyaq- .- Viul

How many blocks are there per sequence?

(n/t) blocks of size t

How many pairs of blocks for aligning the two
sequences”?

(n/t) x (n/t)

For each block pair, solve a mini-alignment
problem of size t x t

Constructing Alignments within Blocks

¢ Solve mini-alignmnent problems

Block pair represented by
each small square

Block Alignment: Dynamic Programming

Let s;; denote the optimal block alignment
score between the first / blocks of u and first j

blocks of v

. N Oblock is the
Si-1j = Oblock penalty for
§;; = Max inserting or
{ Sij-1~ Oblock > deleting an entire
block
Si-1-1 = Bij
. J B;; is score of pair

of blocks in row 7
and column j.

Block Alignment Runtime

Indices /,j range from 0 to n/t

Running time of algorithm is
O([n/t]*[nlt]) = O(n?4/t?)

if we don’t count the time to compute each j;

Block Alignment Runtime (conrd)

Computing all g requires solving (n/t)*(n/t)

mini block alignments, each of size (t*t)

So computing all 5 ;takes time
O([n/t]*[n/t]*t*t) = O(n?)

This is the same as dynamic programming

How do we speed this up?

Four Russians Technique

Let t = log(n), where t is block size, n is
seguence size.

Instead of having (n/t)*(n/t) mini-alignments,
construct 4! x 4! mini-alignments for all pairs
of strings of t nucleotides, and put in a lookup
table.

However, size of lookup table is not really
that huge if tis small. Let t = (logn)/4. Then
4t x 4t =n

Look-up Table for Four Russians Technique

each sequence -
has ¢ 1 { % % Lookup table “Score”

AAAACA

]

nucleotides
AAAAAA
C) °
AAAAAG .81ze is only n,
AAAAA instead of
! [6)*(n/t)
AAAACA (n

New Recurrence

The new lookup table Score is indexed by a
pair of t-nucleotide strings, so

-

. Si-1j = Oblock

v Siji-1 = Oblock

Si1j1 Score(i™ block of v, j™ block of u)

\

Four Russians Speedup Runtime

Since computing the lookup table Score of
size n takes O(n) time, the running time is

mainly limited by the (n/t)*(n/t) accesses to
the lookup table

Each access takes O(logn) time
Overall running time: O([n?%/f?]*logn)
Since t = logn, substitute in:

O([n?/{logn}?]*logn) > O(n4/logn)

So Far...

We can divide up the grid into blocks and run
dynamic programming only on the corners of
these blocks

In order to speed up the mini-alignment
calculations to under n?, we create a lookup
table of size n, which consists of all scores for
all t-nucleotide pairs

Running time goes from quadratic, O(n?), to
subquadratic: O(n?4/logn)

Four Russians Speedup tor LCS

Unlike the block partitioned graph, the LCS
path does not have to pass through the
vertices of the blocks.

I
I

block longest common
alignment subsequence

Block Alignment vs. LCS

In block alignment, we only care about the
corners of the blocks.

In LCS, we care about all points on the edges
of the blocks, because those are points that
the path can traverse.

Recall, each sequence is of length n, each
block is of size t, so each sequence has (n/f)
blocks.

Block Alignment vs. LLCS: Points Of Interest

© © © ©

© © © ©

© © © ©

© © © ©
block alignment LCS alignment
has (n/t)*(n/t) = has O(n?/t)
(n?/t2) points of points of

interest interest

Traversing Blocks for LLCS

Given alignment scores s; . in the first row and scores
St in the first column of a t x ¢ mini square, compute
allgnment scores in the last row and column of the
minisquare.

To compute the last row and the last column score, we
use these 4 variables:

1. alignment scores s, - in the first row

2. alignment scores s. in the first column

5. substring of sequence u in this block (4! possibilities)
4. substring of sequence v in this block (4! possibilities)

Traversing Blocks for I.CS (cont’d)

If we used this to compute the grid, it would
take quadratic, O(n?) time, but we want to do
better.

/—\

we know S
these scores

we can calculate
< these scores

"

txt
block

Four Russians Speedup

Build a lookup table for all possible values of
the four variables:
1. all possible scores for the first row s.
2. all possible scores for the first column s.;
5. substring of sequence u in this block (4! possibilities)
4. substring of sequence v in this block (4! possibilities)

For each quadruple we store the value of the
score for the last row and last column.

This will be a huge table, but we can eliminate
alignments scores that don't make sense

Reducing Table Size

Alignment scores in LCS are monotonically
increasing, and adjacent elements can't differ

by more than 1

Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not
because 2 and 4 differ by more than 1 (and
so do 5 and 8)

Therefore, we only need to store quadruples
whose scores are monotonically increasing
and differ by at most 1

FEtticient Encoding of Alignment Scores

Instead of recording numbers that correspond
to the index in the sequences u and v, we
can use binary to encode the differences

between the alignment scores

original encoding

O 1|22 3] 4
C_, 1111011 binary encoding

Reducing LLookup Table Size

2t possible scores (t = size of blocks)

4t possible strings

o Lookup table size is (2t * 29)*(4t * 4t) = 26t
Let t = (logn)/4;

o Table size is: 26Wogn/4) = p6/4) = pHB3/2)
Time = O([n?/t]*logn)

O([n?/{logn}?]*logn) > O(n4/logn)

Main Observation

Within a rectangle of the DP
matrix,

values of D depend only
on the values of A, B, C,
and substrings x; , ¥, .

Definition:
A t-block is a t x t square of the
DP matrix

Idea:
Divide matrix in t-blocks,
Precompute t-blocks

Speedup: O(t)

Yr

XI XI!
A
C

D

The Four-Russians Algorithm

Main structure of the algorithm:

Divide NxN DP matrix into KxK log,N-
blocks that overlap by 1 column & 1 row

Compute D;; as a function of

Ai,j’ Bi,j’ Ci,j’ X[Ii...l,i], y[rjl”J]

Time: O(N?/ log®N)

The Four-Russians Algorithm

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

Cover the DP table with t-blocks
Initialize values F(.,.) in first row & column

Row-by-row, use offset values at leftmost column and top row of
each block, to find offset values at rightmost column and bottom
row

Let Q = total of offsets at row n; F(n,nN)=Q+F(Nn,0)=Q+n

Runtime: O(n?/ logn)

TTTT i
T LA
ERZEEE
EZEEEE
RRRRRR)
ZEEEEN|

'The Four-Russians Algorithm

Summary

We take advantage of the fact that for each
block of t = log(n), we can pre-compute all

possible scores and store them in a lookup
table of size n32)

Four Russians speedup: from a quadratic

running time for LCS to subquadratic running
time: O(n4/logn)

