
Is It Possible to Align Sequences in 

Subquadratic Time?

 Dynamic Programming takes O(n2) for global 

alignment

 Can we do better?

 Yes, use Four-Russians Speedup



Partitioning Sequences into Blocks

 Partition the n x n grid into blocks of size t x t

 We are comparing two sequences, each of 

size n, and each sequence is sectioned off 

into chunks, each of length t

 Sequence u = u1…un becomes 

|u1…ut| |ut+1…u2t| … |un-t+1…un| 

and sequence v = v1…vn becomes 

|v1…vt| |vt+1…v2t| … |vn-t+1…vn|



Partitioning Alignment Grid  into Blocks
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Block Alignment

 Block alignment of sequences u and v:

1. An entire block in u is aligned with an entire 

block in v

2. An entire block is inserted

3. An entire block is deleted

 Block path: a path that traverses every t x t

square through its corners



Block Alignment: Examples

valid invalid



Block Alignment Problem

 Goal: Find the longest block path through an 

edit graph

 Input: Two sequences, u and v partitioned 

into blocks of size t.  This is equivalent to an 

n x n edit graph partitioned into t x t subgrids

 Output: The block alignment of u and v with 

the maximum score (longest block path 

through the edit graph



Constructing Alignments within Blocks

 To solve: compute alignment score ßi,j for each 

pair of blocks |u(i-1)*t+1…ui*t| and |v(j-1)*t+1…vj*t|

 How many blocks are there per sequence? 

(n/t)  blocks of size t

 How many pairs of blocks for aligning the two 
sequences?  

(n/t) x (n/t)

 For each block pair, solve a mini-alignment 
problem of size t x t



Constructing Alignments within Blocks
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Block Alignment: Dynamic Programming

 Let si,j denote the optimal block alignment 
score between the first i blocks of u and first j
blocks of v

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 - i,j

block is the 

penalty for 

inserting or 

deleting an entire 

block

i,j is score of pair 

of blocks in row i

and column j.



Block Alignment Runtime

 Indices i,j range from 0 to n/t

 Running time of algorithm is 

O( [n/t]*[n/t]) = O(n2/t2) 

if we don’t count the time to compute each i,j



Block Alignment Runtime (cont’d)

 Computing all i,j requires solving (n/t)*(n/t) 

mini block alignments, each of size (t*t)

 So computing all i,j takes time

O([n/t]*[n/t]*t*t) = O(n2)

 This is the same as dynamic programming

 How do we speed this up?



Four Russians Technique

 Let t = log(n), where t is block size, n is 

sequence size.

 Instead of having (n/t)*(n/t) mini-alignments, 

construct 4t x 4t mini-alignments for all pairs 

of strings of t nucleotides, and put in a lookup 

table.

 However, size of lookup table is not really 

that huge if t is small.  Let t = (logn)/4.  Then 

4t x 4t = n



Look-up Table for Four Russians Technique

Lookup table “Score”
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New Recurrence

 The new lookup table Score is indexed by a 
pair of t-nucleotide strings, so

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 – Score(ith block of v, jth block of u)



Four Russians Speedup Runtime

 Since computing the lookup table Score of 

size n takes O(n) time, the running time is 

mainly limited by the (n/t)*(n/t) accesses to 

the lookup table

 Each access takes O(logn) time

 Overall running time: O( [n2/t2]*logn )

 Since t = logn, substitute in:

 O( [n2/{logn}2]*logn) > O( n2/logn )



So Far…

 We can divide up the grid into blocks and run 

dynamic programming only on the corners of 

these blocks

 In order to speed up the mini-alignment 

calculations to under n2, we create a lookup 

table of size n, which consists of all scores for 

all t-nucleotide pairs

 Running time goes from quadratic, O(n2), to 

subquadratic: O(n2/logn)



Four Russians Speedup for LCS

 Unlike the block partitioned graph, the LCS 
path does not have to pass through the 
vertices of the blocks.

block 

alignment
longest common 

subsequence



Block Alignment vs. LCS

 In block alignment, we only care about the 

corners of the blocks.

 In LCS, we care about all points on the edges 

of the blocks, because those are points that 

the path can traverse.

 Recall, each sequence is of length n, each 

block is of size t, so each sequence has (n/t) 

blocks.



Block Alignment vs. LCS: Points Of Interest

block alignment 

has (n/t)*(n/t) = 

(n2/t2) points of 

interest

LCS alignment 

has O(n2/t) 

points of 

interest



Traversing Blocks for LCS

 Given alignment scores si,* in the first row and scores 
s*,j in the first column of a t x t mini square, compute 
alignment scores in the last row and column of the 
minisquare.

 To compute the last row and the last column score, we 
use these 4 variables:

1. alignment scores si,* in the first row

2. alignment scores s*,j in the first column

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)



Traversing Blocks for LCS (cont’d)

 If we used this to compute the grid, it would 
take quadratic, O(n2) time, but we want to do 
better.

we know 

these scores

we can calculate 

these scores

t x t

block



Four Russians Speedup

 Build a lookup table for all possible values of 

the four variables: 

1. all possible scores for the first row s*,j

2. all possible scores for the first column s*,j

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)

 For each quadruple we store the value of the 

score for the last row and last column.

 This will be a huge table, but we can eliminate 

alignments scores that don’t make sense



Reducing Table Size

 Alignment scores in LCS are monotonically 

increasing, and adjacent elements can’t differ 

by more than 1

 Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not 

because 2 and 4 differ by more than 1 (and 

so do 5 and 8)

 Therefore, we only need to store quadruples 

whose scores are monotonically increasing 

and differ by at most 1



Efficient Encoding of Alignment Scores

 Instead of recording numbers that correspond 
to the index in the sequences u and v, we 
can use binary to encode the differences 
between the alignment scores

0 1 2 2 3 4

1 1 0 1 1

original encoding

binary encoding



Reducing Lookup Table Size

 2t possible scores (t =  size of blocks)

 4t possible strings

 Lookup table size is (2t * 2t)*(4t * 4t) = 26t

 Let t = (logn)/4;

 Table size is: 26((logn)/4) = n(6/4) = n(3/2)

 Time = O( [n2/t2]*logn )

 O( [n2/{logn}2]*logn) > O( n2/logn )



Main Observation

Within a rectangle of the DP 
matrix,

values of D depend only

on the values of A, B, C,

and substrings xl...l’, yr…r’

Definition:

A t-block is a t  t square of the 
DP matrix

Idea:

Divide matrix in t-blocks,

Precompute t-blocks

Speedup: O(t)
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The Four-Russians Algorithm

Main structure of the algorithm:

 Divide NN DP matrix into KK log2N-

blocks that overlap by 1 column & 1 row

 For i = 1……K

 For j = 1……K

 Compute Di,j as a function of 

Ai,j, Bi,j, Ci,j, x[li…l’i], y[rj…r’j]

Time: O(N2 / log2N) 

t t t



The Four-Russians Algorithm

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

1. Cover the DP table with t-blocks

2. Initialize values F(.,.) in first row & column

3. Row-by-row, use offset values at leftmost column and top row of 

each block, to find offset values at rightmost column and bottom 

row

4. Let Q = total of offsets at row n; F(n, n) = Q + F(n, 0) = Q + n

Runtime: O(n2 / logn)



The Four-Russians Algorithm

t t t



Summary

 We take advantage of the fact that for each 

block of t = log(n), we can pre-compute all 

possible scores and store them in a lookup 

table of size n(3/2)

 Four Russians speedup: from a quadratic 

running time for LCS to subquadratic running 

time: O(n2/logn)


