
Is It Possible to Align Sequences in 

Subquadratic Time?

 Dynamic Programming takes O(n2) for global 

alignment

 Can we do better?

 Yes, use Four-Russians Speedup



Partitioning Sequences into Blocks

 Partition the n x n grid into blocks of size t x t

 We are comparing two sequences, each of 

size n, and each sequence is sectioned off 

into chunks, each of length t

 Sequence u = u1…un becomes 

|u1…ut| |ut+1…u2t| … |un-t+1…un| 

and sequence v = v1…vn becomes 

|v1…vt| |vt+1…v2t| … |vn-t+1…vn|



Partitioning Alignment Grid  into Blocks

partition

n n/t

n/t

t

tn



Block Alignment

 Block alignment of sequences u and v:

1. An entire block in u is aligned with an entire 

block in v

2. An entire block is inserted

3. An entire block is deleted

 Block path: a path that traverses every t x t

square through its corners



Block Alignment: Examples

valid invalid



Block Alignment Problem

 Goal: Find the longest block path through an 

edit graph

 Input: Two sequences, u and v partitioned 

into blocks of size t.  This is equivalent to an 

n x n edit graph partitioned into t x t subgrids

 Output: The block alignment of u and v with 

the maximum score (longest block path 

through the edit graph



Constructing Alignments within Blocks

 To solve: compute alignment score ßi,j for each 

pair of blocks |u(i-1)*t+1…ui*t| and |v(j-1)*t+1…vj*t|

 How many blocks are there per sequence? 

(n/t)  blocks of size t

 How many pairs of blocks for aligning the two 
sequences?  

(n/t) x (n/t)

 For each block pair, solve a mini-alignment 
problem of size t x t



Constructing Alignments within Blocks

n/t

Block pair represented by 

each small square

Solve mini-alignmnent problems



Block Alignment: Dynamic Programming

 Let si,j denote the optimal block alignment 
score between the first i blocks of u and first j
blocks of v

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 - i,j

block is the 

penalty for 

inserting or 

deleting an entire 

block

i,j is score of pair 

of blocks in row i

and column j.



Block Alignment Runtime

 Indices i,j range from 0 to n/t

 Running time of algorithm is 

O( [n/t]*[n/t]) = O(n2/t2) 

if we don’t count the time to compute each i,j



Block Alignment Runtime (cont’d)

 Computing all i,j requires solving (n/t)*(n/t) 

mini block alignments, each of size (t*t)

 So computing all i,j takes time

O([n/t]*[n/t]*t*t) = O(n2)

 This is the same as dynamic programming

 How do we speed this up?



Four Russians Technique

 Let t = log(n), where t is block size, n is 

sequence size.

 Instead of having (n/t)*(n/t) mini-alignments, 

construct 4t x 4t mini-alignments for all pairs 

of strings of t nucleotides, and put in a lookup 

table.

 However, size of lookup table is not really 

that huge if t is small.  Let t = (logn)/4.  Then 

4t x 4t = n



Look-up Table for Four Russians Technique

Lookup table “Score”

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA
…

A
A
A
A
A
A

A
A
A
A
A
C

A
A
A
A
A
G

A
A
A
A
A
T

A
A
A
A
C
A

…

each sequence 

has t

nucleotides

size is only n, 

instead of 

(n/t)*(n/t)



New Recurrence

 The new lookup table Score is indexed by a 
pair of t-nucleotide strings, so

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 – Score(ith block of v, jth block of u)



Four Russians Speedup Runtime

 Since computing the lookup table Score of 

size n takes O(n) time, the running time is 

mainly limited by the (n/t)*(n/t) accesses to 

the lookup table

 Each access takes O(logn) time

 Overall running time: O( [n2/t2]*logn )

 Since t = logn, substitute in:

 O( [n2/{logn}2]*logn) > O( n2/logn )



So Far…

 We can divide up the grid into blocks and run 

dynamic programming only on the corners of 

these blocks

 In order to speed up the mini-alignment 

calculations to under n2, we create a lookup 

table of size n, which consists of all scores for 

all t-nucleotide pairs

 Running time goes from quadratic, O(n2), to 

subquadratic: O(n2/logn)



Four Russians Speedup for LCS

 Unlike the block partitioned graph, the LCS 
path does not have to pass through the 
vertices of the blocks.

block 

alignment
longest common 

subsequence



Block Alignment vs. LCS

 In block alignment, we only care about the 

corners of the blocks.

 In LCS, we care about all points on the edges 

of the blocks, because those are points that 

the path can traverse.

 Recall, each sequence is of length n, each 

block is of size t, so each sequence has (n/t) 

blocks.



Block Alignment vs. LCS: Points Of Interest

block alignment 

has (n/t)*(n/t) = 

(n2/t2) points of 

interest

LCS alignment 

has O(n2/t) 

points of 

interest



Traversing Blocks for LCS

 Given alignment scores si,* in the first row and scores 
s*,j in the first column of a t x t mini square, compute 
alignment scores in the last row and column of the 
minisquare.

 To compute the last row and the last column score, we 
use these 4 variables:

1. alignment scores si,* in the first row

2. alignment scores s*,j in the first column

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)



Traversing Blocks for LCS (cont’d)

 If we used this to compute the grid, it would 
take quadratic, O(n2) time, but we want to do 
better.

we know 

these scores

we can calculate 

these scores

t x t

block



Four Russians Speedup

 Build a lookup table for all possible values of 

the four variables: 

1. all possible scores for the first row s*,j

2. all possible scores for the first column s*,j

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)

 For each quadruple we store the value of the 

score for the last row and last column.

 This will be a huge table, but we can eliminate 

alignments scores that don’t make sense



Reducing Table Size

 Alignment scores in LCS are monotonically 

increasing, and adjacent elements can’t differ 

by more than 1

 Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not 

because 2 and 4 differ by more than 1 (and 

so do 5 and 8)

 Therefore, we only need to store quadruples 

whose scores are monotonically increasing 

and differ by at most 1



Efficient Encoding of Alignment Scores

 Instead of recording numbers that correspond 
to the index in the sequences u and v, we 
can use binary to encode the differences 
between the alignment scores

0 1 2 2 3 4

1 1 0 1 1

original encoding

binary encoding



Reducing Lookup Table Size

 2t possible scores (t =  size of blocks)

 4t possible strings

 Lookup table size is (2t * 2t)*(4t * 4t) = 26t

 Let t = (logn)/4;

 Table size is: 26((logn)/4) = n(6/4) = n(3/2)

 Time = O( [n2/t2]*logn )

 O( [n2/{logn}2]*logn) > O( n2/logn )



Main Observation

Within a rectangle of the DP 
matrix,

values of D depend only

on the values of A, B, C,

and substrings xl...l’, yr…r’

Definition:

A t-block is a t  t square of the 
DP matrix

Idea:

Divide matrix in t-blocks,

Precompute t-blocks

Speedup: O(t)

A B

C

D

xl xl’

yr

yr’

t



The Four-Russians Algorithm

Main structure of the algorithm:

 Divide NN DP matrix into KK log2N-

blocks that overlap by 1 column & 1 row

 For i = 1……K

 For j = 1……K

 Compute Di,j as a function of 

Ai,j, Bi,j, Ci,j, x[li…l’i], y[rj…r’j]

Time: O(N2 / log2N) 

t t t



The Four-Russians Algorithm

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

1. Cover the DP table with t-blocks

2. Initialize values F(.,.) in first row & column

3. Row-by-row, use offset values at leftmost column and top row of 

each block, to find offset values at rightmost column and bottom 

row

4. Let Q = total of offsets at row n; F(n, n) = Q + F(n, 0) = Q + n

Runtime: O(n2 / logn)



The Four-Russians Algorithm

t t t



Summary

 We take advantage of the fact that for each 

block of t = log(n), we can pre-compute all 

possible scores and store them in a lookup 

table of size n(3/2)

 Four Russians speedup: from a quadratic 

running time for LCS to subquadratic running 

time: O(n2/logn)


