
CS481: Bioinformatics

Algorithms

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

CLUSTERING

Applications of Clustering

 Viewing and analyzing vast amounts of

biological data as a whole set can be

infeasible

 It is easier to interpret the data if they are

partitioned into clusters combining similar

data points.

Homogeneity and Separation Principles

 Homogeneity: Elements within a cluster are close
to each other

 Separation: Elements in different clusters are
further apart from each other

 …clustering is not an easy task!

Given these points a

clustering algorithm

might make two distinct

clusters as follows

Bad Clustering

This clustering violates both

Homogeneity and Separation

principles

Close distances from

points in separate

clusters

Far distances from

points in the same

cluster

Good Clustering

This clustering satisfies both

Homogeneity and Separation

principles

Clustering Techniques

 Agglomerative: Start with every element in its
own cluster, and iteratively join clusters
together

 Divisive: Start with one cluster and iteratively
divide it into smaller clusters

 Hierarchical: Organize elements into a tree,
leaves represent data points and the length of
the pathes between leaves represents the
distances between data points. Similar data
points lie within the same subtrees

Hierarchical Clustering

Hierarchical Clustering: Example

Hierarchical Clustering: Example

Hierarchical Clustering: Example

Hierarchical Clustering: Example

Hierarchical Clustering: Example

Hierarchical Clustering Algorithm

1. Hierarchical Clustering (d , n)
2. Form n clusters each with one element
3. Construct a graph T by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C1 and C2

6. Merge C1 and C2 into new cluster C with |C1| +|C2| elements
7. Compute distance from C to all other clusters
8. Add a new vertex C to T and connect to vertices C1 and C2

9. Remove rows and columns of d corresponding to C1 and C2

10. Add a row and column to d corrsponding to the new cluster C
11. return T

The algorithm takes a nxn distance matrix d of pairwise
distances between points as an input.

Hierarchical Clustering Algorithm

1. Hierarchical Clustering (d , n)
2. Form n clusters each with one element
3. Construct a graph T by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C1 and C2

6. Merge C1 and C2 into new cluster C with |C1| +|C2| elements
7. Compute distance from C to all other clusters
8. Add a new vertex C to T and connect to vertices C1 and C2

9. Remove rows and columns of d corresponding to C1 and C2

10. Add a row and column to d corrsponding to the new cluster C
11. return T

Different ways to define distances between clusters may lead to different clusterings

Hierarchical Clustering: Recomputing Distances

 dmin(C, C*) = min d(x,y)

for all elements x in C and y in C*

 Distance between two clusters is the smallest
distance between any pair of their elements

 davg(C, C*) = (1 / |C*||C|) ∑ d(x,y)

for all elements x in C and y in C*

 Distance between two clusters is the average
distance between all pairs of their elements

Squared Error Distortion

 Given a data point v and a set of points X,

define the distance from v to X

d(v, X)

as the (Eucledian) distance from v to the closest point from X.

 Given a set of n data points V={v1…vn} and a set of k points X,

define the Squared Error Distortion

d(V,X) = ∑d(vi, X)2 / n 1 < i < n

K-Means Clustering Problem: Formulation

 Input: A set, V, consisting of n points and a

parameter k

 Output: A set X consisting of k points (cluster

centers) that minimizes the squared error

distortion d(V,X) over all possible choices of X

1-Means Clustering Problem: an Easy Case

 Input: A set, V, consisting of n points

 Output: A single point x (cluster
center) that minimizes the squared
error distortion d(V,x) over all possible
choices of x

1-Means Clustering Problem: an Easy Case

 Input: A set, V, consisting of n points

 Output: A single point x (cluster center) that
minimizes the squared error distortion d(V,x) over all
possible choices of x

1-Means Clustering problem is easy.

However, it becomes very difficult (NP-complete) for more than one center.

An efficient heuristic method for K-Means clustering is the Lloyd algorithm

K-Means Clustering: Lloyd Algorithm

1. Lloyd Algorithm
2. Arbitrarily assign the k cluster centers
3. while the cluster centers keep changing
4. Assign each data point to the cluster Ci

corresponding to the closest cluster
representative (center) (1 ≤ i ≤ k)

5. After the assignment of all data points,
compute new cluster representatives
according to the center of gravity of each
cluster, that is, the new cluster
representative is
∑v / |C| for all v in C for every cluster C

*This may lead to merely a locally optimal clustering.

0

1

2

3

4

5

0 1 2 3 4 5

c
o

n
d

it
io

n
 2

condition 1

x1

x2

x3

0

1

2

3

4

5

0 1 2 3 4 5

c
o

n
d

it
io

n
 2

condition 1

x1

x2

x3

0

1

2

3

4

5

0 1 2 3 4 5

c
o

n
d

it
io

n
 2

condition 1

x1

x2

x3

0

1

2

3

4

5

0 1 2 3 4 5

c
o

n
d

it
io

n
 2

condition 1

x1

x2

x3

Conservative K-Means Algorithm

 Lloyd algorithm is fast but in each iteration it
moves many data points, not necessarily causing
better convergence.

 A more conservative method would be to move
one point at a time only if it improves the overall
clustering cost

 The smaller the clustering cost of a partition of
data points is the better that clustering is

 Different methods (e.g., the squared error
distortion) can be used to measure this
clustering cost

K-Means Greedy Algorithm

1. ProgressiveGreedyK-Means(k)
2. Select an arbitrary partition P into k clusters
3. while forever
4. bestChange  0
5. for every cluster C
6. for every element i not in C
7. if moving i to cluster C reduces its clustering cost
8. if (cost(P) – cost(Pi  C) > bestChange
9. bestChange  cost(P) – cost(Pi  C)
10. i*  I
11. C*

 C
12. if bestChange > 0
13. Change partition P by moving i* to C*

14. else
15. return P

CLUSTERING USING GRAPHS

Clique Graphs

 A clique is a graph with every vertex connected

to every other vertex

 A clique graph is a graph where each

connected component is a clique

Transforming an Arbitrary Graph into a

Clique Graphs

• A graph can be transformed into a

clique graph by adding or removing edges

Corrupted Cliques Problem

Input: A graph G

Output: The smallest number of additions and

removals of edges that will transform G into a

clique graph

Distance Graphs

 Turn the distance matrix into a distance graph

 Genes are represented as vertices in the graph

 Choose a distance threshold θ

 If the distance between two vertices is below θ,

draw an edge between them

 The resulting graph may contain cliques

 These cliques represent clusters of closely

located data points

Transforming Distance Graph into Clique Graph

The distance graph

(threshold θ=7) is

transformed into a

clique graph after

removing the two

highlighted edges

After transforming

the distance graph

into the clique

graph, the dataset

is partitioned into

three clusters

Heuristics for Corrupted Clique Problem

 Corrupted Cliques problem is NP-Hard, some
heuristics exist to approximately solve it:

 CAST (Cluster Affinity Search Technique): a
practical and fast algorithm:

 CAST is based on the notion of genes close to
cluster C or distant from cluster C

 Distance between gene i and cluster C:

d(i,C) = average distance between gene i and all genes in C

Gene i is close to cluster C if d(i,C)< θ and distant otherwise

CAST Algorithm

1. CAST(S, G, θ)
2. P  Ø
3. while S ≠ Ø
4. V  vertex of maximal degree in the distance graph G
5. C  {v}
6. while a close gene i not in C or distant gene i in C exists
7. Find the nearest close gene i not in C and add it to C
8. Remove the farthest distant gene i in C
9. Add cluster C to partition P
10. S  S \ C
11. Remove vertices of cluster C from the distance graph G
12. return P

S – set of elements, G – distance graph, θ - distance threshold

CAST Algorithm

g1

g3

g2

g8

g4

g6

g5

g7

g9

g10

Θ = 7
P = Ø

S={g1,…,g10}

degree(g10) = 4

C1 = {g10}

C1 = {g2, g10}

d(g1, C1) = (7+8.1) / 2 = 7.55

d(g4, C1) = (0.9+1.1) / 2 = 1

d(g9, C1) = (2+1.1) / 2 = 1.55

C1 = {g2, g4, g10}

d(g9,C) = (2+1.6+1) / 3 = 1.53

C1 = {g2, g4, g9, g10}

P = {C1}

7

5.1

2.3

5.6

1.1

1

1.1 2

0.9

1.6

1.1

0.7
1

6.1

CAST Algorithm

g1

g3

g8

g6

g5

g7

Θ = 7

P = {C1}

C1 = {g2, g4, g9, g10}

S={g1,g3,g5, g6,g7, g8}

degree(g1) = 2

C2 = {g1}

C2 = {g1, g6}

d(g7, C2) = (5.1+5.6) / 2 = 5.35

C2 = {g1, g6, g7}

P = {C1, C2}

5.1

2.3

5.6

1.1

0.7
1

CAST Algorithm

g3

g8

g5

Θ = 7

P = {C1, C2}

C1 = {g2, g4, g9, g10}

C2 = {g1, g6, g7}

S={g3,g5, g8}

degree(g3) = 2

C3 = {g3}

C3 = {g3, g5}

d(g8, C3) = (1.1+1) / 2 = 1.05

C3 = {g3, g5, g8}

P = {C1, C2, C3}

1.1

0.7
1

CAST Algorithm
Θ = 7

P = {C1, C2, C3}

C1 = {g2, g4, g9, g10}

C2 = {g1, g6, g7}

C3 = {g3, g5, g8}
S = Ø

… done

