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GENOME 

REARRANGEMENTS



Turnip vs Cabbage: Look and Taste Different

 Although cabbages and turnips share a recent 

common ancestor, they look and taste different



Turnip vs Cabbage: Almost Identical mtDNA

gene sequences

 In 1980s Jeffrey Palmer studied evolution 
of plant organelles by comparing 
mitochondrial genomes of the cabbage and 
turnip

 99% similarity between genes

 These surprisingly identical gene 
sequences differed in gene order

 This study helped pave the way to 
analyzing genome rearrangements in 
molecular evolution



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Similarity blocks



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Before

After

Evolution is manifested as the divergence 

in gene order



Transforming Cabbage into Turnip



What are the similarity blocks and how to find 
them?

What is the architecture of the ancestral 
genome?

What is the evolutionary scenario for 
transforming one genome into the other?

Unknown ancestor

~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements



History of Chromosome X

Rat Consortium, Nature, 2004





Reversals

 Blocks represent conserved genes.
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Reversals
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1, 2, 3, -8, -7, -6, -5, -4, 9, 10

 Blocks represent conserved genes.

 In the course of evolution or in a clinical context, blocks 
1,…,10 could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 
10.



Reversals and Breakpoints

1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).



Reversals: Example

5’ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break 

and 

Invert



Types of Rearrangements

Reversal

1  2  3  4  5 6 1  2 -5 -4 -3 6

Translocation
1  2  3  

4 5  6

1  2 6  

4 5 3 

1  2  3  4  

5  6
1  2  3  4  5  6

Fusion

Fission



Comparative Genomic Architectures: 

Mouse vs Human Genome

 Humans and mice 

have similar genomes, 

but their genes are 

ordered differently

 ~245 rearrangements

 Reversals

 Fusions

 Fissions

 Translocation



Human chromosome 2



Reversals: Example

p = 1 2 3 4 5 6 7 8                 

r(3,5)

1 2 5 4 3 6 7 8



Reversals: Example

p = 1 2 3 4 5 6 7 8                 

r(3,5)

1 2 5 4 3 6 7 8

r(5,6)

1 2 5 4 6 3 7 8



Reversals and Gene Orders

 Gene order is represented by a 

permutation p: 

p   = p 1 ------ p i-1 p i p i+1 ------ p j-1 p j p j+1 ----- p n

p 1 ------ p i-1 p j p j-1 ------ p i+1 p i p j+1 ----- pn

 Reversal r ( i, j ) reverses (flips) the 

elements from i to j in p

r(i,j)



Reversal Distance Problem

 Goal: Given two permutations, find the shortest 
series of reversals that transforms one into another

 Input: Permutations p and s

 Output: A series of reversals r1,…rt transforming p
into s, such that t is minimum

 t - reversal distance between p and s

 d(p, s) - smallest possible value of t, given p and s



Sorting By Reversals Problem

 Goal: Given a permutation, find a shortest 
series of reversals that transforms it into the 
identity permutation (1 2 … n ) 

 Input: Permutation p

 Output: A series of reversals r1, … rt
transforming p into the identity permutation 
such that t is minimum



Sorting By Reversals: Example

 t =d(p ) - reversal distance of p
 Example :

p =  3  4 2  1  5  6  7  10  9  8

4  3  2  1 5   6  7  10  9  8

4  3  2  1 5  6  7    8  9 10

1  2  3  4  5  6  7    8  9 10

So d(p ) = 3



Sorting by reversals: 5 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: g 1 2 3 4 5 6 7 8



Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: g 1 2 3 4 5 6 7 8



Pancake Flipping Problem

 The chef is sloppy; he 

prepares an unordered stack 

of pancakes of different sizes

 The waiter wants to 

rearrange them (so that the 

smallest winds up on top, 

and so on, down to the 

largest at the bottom)

 He does it by flipping over 

several from the top, 

repeating this as many times 

as necessary

Christos Papadimitrou and 

William H. Gates flip 

pancakes



Pancake Flipping Problem: Formulation

 Goal: Given a stack of n pancakes, what is 

the minimum number of flips to rearrange 

them into perfect stack?

 Input: Permutation p

 Output: A series of prefix reversals r1, … rt

transforming p into the identity permutation 

such that t is minimum



Pancake Flipping Problem: Greedy Algorithm

 Greedy approach: 2 prefix reversals at most 

to place a pancake in its right position, 2n – 2

steps total at most

 William Gates and Christos Papadimitriou 

showed in the mid-1970s that this problem 

can be solved by at most 5/3 (n + 1) prefix 

reversals



Sorting By Reversals: A Greedy Algorithm

 If sorting permutation p = 1 2 3 6 4 5, the first 
three elements are already in order so it does 
not make any sense to break them. 

 The length of the already sorted prefix of p is 
denoted prefix(p)

 prefix(p) = 3

 This results in an idea for a greedy algorithm: 
increase prefix(p) at every step



 Doing so, p can be sorted

1 2 3 6 4 5 

1 2 3 4 6 5

1 2 3 4 5 6

 Number of steps to sort permutation of 
length n is at most (n – 1)

Greedy Algorithm: An Example



Greedy Algorithm: Pseudocode

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3    if j ≠i

4       p  p * r(i, j)

5       output p

6    if p is the identity permutation 

7      return



Analyzing SimpleReversalSort

 SimpleReversalSort does not guarantee the 
smallest number of reversals and takes five 
steps on  p = 6 1 2 3 4 5 :

 Step 1: 1 6 2 3 4 5

 Step 2: 1 2 6 3 4 5 

 Step 3: 1 2 3 6 4 5

 Step 4: 1 2 3 4 6 5

 Step 5: 1 2 3 4 5 6



 But it can be sorted in two steps:

p =  6 1 2 3 4 5

 Step 1:  5 4 3 2 1 6     

 Step 2:  1 2 3 4 5 6

 So, SimpleReversalSort(p) is not optimal

 Optimal poly-time algorithms are unknown for 

NP-hard problems; approximation algorithms 

are used

Analyzing SimpleReversalSort (cont’d)



Approximation Algorithms

 These algorithms find approximate solutions 
rather than optimal solutions

 The approximation ratio of an algorithm A on 
input p is:

A(p) / OPT(p)

where 

A(p) - solution produced by algorithm A                 
OPT(p) - optimal solution of the problem



Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n

 For algorithm A that minimizes objective 

function (minimization algorithm):

 max|p| = n A(p) / OPT(p)



Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n

 For algorithm A that minimizes objective 

function (minimization algorithm):

 max|p| = n A(p) / OPT(p)

 For maximization algorithm:

 min|p| = n A(p) / OPT(p)



p = p1p2p3…pn-1pn

 A pair of elements p i and p i + 1 are adjacent if 

pi+1 = pi + 1

 For example:

p = 1  9  3  4  7  8  2  6  5

 (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints



There is a breakpoint between any adjacent 
element that are non-consecutive:

p = 1  9  3  4  7  8  2  6  5

 Pairs  (1,9), (9,3), (4,7), (8,2) and (2,6) form 
breakpoints of permutation p 

 b(p) - # breakpoints in permutation p

Breakpoints



Adjacency & Breakpoints

•An adjacency - a pair of adjacent elements that are consecutive

•A breakpoint - a pair of adjacent elements that are not 

consecutive

π = 5  6  2  1  3  4

0  5  6  2  1  3  4  7

adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7



 We put two elements p 0 =0 and p n + 1=n+1 at 

the ends of p

Example: 

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

p = 1  9  3  4  7  8  2  6  5

p = 0 1 9  3  4  7  8  2  6  5 10



 Each reversal eliminates at most 2 breakpoints.

p = 2  3  1  4  6  5

0 2  3  1 4  6  5 7 b(p) = 5

0 1  3  2 4  6  5  7 b(p) = 4

0 1  2  3  4  6  5 7 b(p) = 2

0 1  2  3  4  5  6  7 b(p) = 0

Reversal Distance and Breakpoints



 Each reversal eliminates at most 2 breakpoints.

 This implies: 

reversal distance  ≥  #breakpoints / 2

p = 2  3  1  4  6  5

0 2  3  1 4  6  5 7 b(p) = 5

0 1  3  2 4  6  5  7 b(p) = 4

0 1  2  3  4  6  5 7 b(p) = 2

0 1  2  3  4  5  6  7 b(p) = 0

Reversal Distance and Breakpoints



Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,   
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return



Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,   
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return

Problem: this algorithm may work forever



Strips

 Strip: an interval between two consecutive 
breakpoints in a permutation 

 Decreasing strip: strip of elements in 
decreasing order (e.g. 6 5 and 3 2 ).

 Increasing strip: strip of elements in increasing 
order (e.g. 7 8)

0 1  9  4  3  7  8  2  5  6 10

 A single-element strip can be declared either increasing or 
decreasing. We will choose to declare them as decreasing with 
exception of the strips with 0 and n+1



Reducing the Number of Breakpoints

Theorem 1:

If permutation p contains at least one 

decreasing strip, then there exists a 

reversal r which decreases the number of 

breakpoints (i.e. b(p • r) < b(p) )



Things To Consider

 For p = 1 4 6 5 7 8 3 2  

0 1  4  6  5  7  8  3  2  9 b(p) = 5

 Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 



Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2  

0 1  4  6  5  7  8  3  2 9 b(p) = 5

 Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 



Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2  

0 1 4  6  5  7  8  3  2 9 b(p) = 5

 Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 

 Find k – 1 in the permutation



Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2  

0 1 4  6  5  7  8  3  2 9 b(p) = 5

 Choose decreasing strip with the smallest 
element k in p ( k = 2 in this case) 

 Find k – 1 in the permutation

 Reverse the segment between k and k-1:

 0 1 4  6  5  7  8  3  2 9 b(p) = 5

 0 1 2 3  8  7  5  6  4 9 b(p) = 4



Reducing the Number of Breakpoints 

Again

 If there is no decreasing strip, there may be 
no reversal r that reduces the number of 
breakpoints (i.e. b(p • r)  ≥ b(p) for any  
reversal r). 

 By reversing an increasing strip ( # of 
breakpoints stay unchanged ), we will create 
a decreasing strip at the next step. Then the 
number of breakpoints will be reduced in the 
next step (theorem 1).



Things To Consider (cont’d)

 There are no decreasing strips in p, for:

p = 0 1  2  5  6  7  3  4  8    b(p) = 3

p • r(6,7) = 0 1  2  5  6  7  4  3  8 b(p) = 3

 r(6,7) does not change the # of breakpoints

 r(6,7) creates a decreasing strip thus 
guaranteeing that the next step will decrease 
the # of breakpoints.



ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2     if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that   minimizes b(p • r)

4     else
5        Choose a reversal r that flips an increasing strip in p

6   p  p • r

7      output p
8  return



 ImprovedBreakPointReversalSort is an 

approximation algorithm with a performance 

guarantee of at most 4

 It eliminates at least one breakpoint in every two 

steps;  at most 2b(p) steps

 Approximation ratio: 2b(p)  / d(p)

 Optimal algorithm eliminates at most 2 

breakpoints in every step: d(p)  b(p) / 2

 Performance guarantee:

 ( 2b(p) / d(p) )  [ 2b(p) / (b(p) / 2) ] =  4

ImprovedBreakpointReversalSort: 

Performance Guarantee


