
CS481: Bioinformatics

Algorithms

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

GENOME

REARRANGEMENTS

Turnip vs Cabbage: Look and Taste Different

 Although cabbages and turnips share a recent

common ancestor, they look and taste different

Turnip vs Cabbage: Almost Identical mtDNA

gene sequences

 In 1980s Jeffrey Palmer studied evolution
of plant organelles by comparing
mitochondrial genomes of the cabbage and
turnip

 99% similarity between genes

 These surprisingly identical gene
sequences differed in gene order

 This study helped pave the way to
analyzing genome rearrangements in
molecular evolution

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Similarity blocks

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Before

After

Evolution is manifested as the divergence

in gene order

Transforming Cabbage into Turnip

What are the similarity blocks and how to find
them?

What is the architecture of the ancestral
genome?

What is the evolutionary scenario for
transforming one genome into the other?

Unknown ancestor

~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements

History of Chromosome X

Rat Consortium, Nature, 2004

Reversals

 Blocks represent conserved genes.

1 32

4

10

5
6

8

9

7

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Reversals

1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

 Blocks represent conserved genes.

 In the course of evolution or in a clinical context, blocks
1,…,10 could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9,
10.

Reversals and Breakpoints

1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).

Reversals: Example

5’ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break

and

Invert

Types of Rearrangements

Reversal

1 2 3 4 5 6 1 2 -5 -4 -3 6

Translocation
1 2 3

4 5 6

1 2 6

4 5 3

1 2 3 4

5 6
1 2 3 4 5 6

Fusion

Fission

Comparative Genomic Architectures:

Mouse vs Human Genome

 Humans and mice

have similar genomes,

but their genes are

ordered differently

 ~245 rearrangements

 Reversals

 Fusions

 Fissions

 Translocation

Human chromosome 2

Reversals: Example

p = 1 2 3 4 5 6 7 8

r(3,5)

1 2 5 4 3 6 7 8

Reversals: Example

p = 1 2 3 4 5 6 7 8

r(3,5)

1 2 5 4 3 6 7 8

r(5,6)

1 2 5 4 6 3 7 8

Reversals and Gene Orders

 Gene order is represented by a

permutation p:

p = p 1 ------ p i-1 p i p i+1 ------ p j-1 p j p j+1 ----- p n

p 1 ------ p i-1 p j p j-1 ------ p i+1 p i p j+1 ----- pn

 Reversal r (i, j) reverses (flips) the

elements from i to j in p

r(i,j)

Reversal Distance Problem

 Goal: Given two permutations, find the shortest
series of reversals that transforms one into another

 Input: Permutations p and s

 Output: A series of reversals r1,…rt transforming p
into s, such that t is minimum

 t - reversal distance between p and s

 d(p, s) - smallest possible value of t, given p and s

Sorting By Reversals Problem

 Goal: Given a permutation, find a shortest
series of reversals that transforms it into the
identity permutation (1 2 … n)

 Input: Permutation p

 Output: A series of reversals r1, … rt
transforming p into the identity permutation
such that t is minimum

Sorting By Reversals: Example

 t =d(p) - reversal distance of p
 Example :

p = 3 4 2 1 5 6 7 10 9 8

4 3 2 1 5 6 7 10 9 8

4 3 2 1 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

So d(p) = 3

Sorting by reversals: 5 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: g 1 2 3 4 5 6 7 8

Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: g 1 2 3 4 5 6 7 8

Pancake Flipping Problem

 The chef is sloppy; he

prepares an unordered stack

of pancakes of different sizes

 The waiter wants to

rearrange them (so that the

smallest winds up on top,

and so on, down to the

largest at the bottom)

 He does it by flipping over

several from the top,

repeating this as many times

as necessary

Christos Papadimitrou and

William H. Gates flip

pancakes

Pancake Flipping Problem: Formulation

 Goal: Given a stack of n pancakes, what is

the minimum number of flips to rearrange

them into perfect stack?

 Input: Permutation p

 Output: A series of prefix reversals r1, … rt

transforming p into the identity permutation

such that t is minimum

Pancake Flipping Problem: Greedy Algorithm

 Greedy approach: 2 prefix reversals at most

to place a pancake in its right position, 2n – 2

steps total at most

 William Gates and Christos Papadimitriou

showed in the mid-1970s that this problem

can be solved by at most 5/3 (n + 1) prefix

reversals

Sorting By Reversals: A Greedy Algorithm

 If sorting permutation p = 1 2 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

 The length of the already sorted prefix of p is
denoted prefix(p)

 prefix(p) = 3

 This results in an idea for a greedy algorithm:
increase prefix(p) at every step

 Doing so, p can be sorted

1 2 3 6 4 5

1 2 3 4 6 5

1 2 3 4 5 6

 Number of steps to sort permutation of
length n is at most (n – 1)

Greedy Algorithm: An Example

Greedy Algorithm: Pseudocode

SimpleReversalSort(p)

1 for i 1 to n – 1

2 j position of element i in p (i.e., pj = i)

3 if j ≠i

4 p p * r(i, j)

5 output p

6 if p is the identity permutation

7 return

Analyzing SimpleReversalSort

 SimpleReversalSort does not guarantee the
smallest number of reversals and takes five
steps on p = 6 1 2 3 4 5 :

 Step 1: 1 6 2 3 4 5

 Step 2: 1 2 6 3 4 5

 Step 3: 1 2 3 6 4 5

 Step 4: 1 2 3 4 6 5

 Step 5: 1 2 3 4 5 6

 But it can be sorted in two steps:

p = 6 1 2 3 4 5

 Step 1: 5 4 3 2 1 6

 Step 2: 1 2 3 4 5 6

 So, SimpleReversalSort(p) is not optimal

 Optimal poly-time algorithms are unknown for

NP-hard problems; approximation algorithms

are used

Analyzing SimpleReversalSort (cont’d)

Approximation Algorithms

 These algorithms find approximate solutions
rather than optimal solutions

 The approximation ratio of an algorithm A on
input p is:

A(p) / OPT(p)

where

A(p) - solution produced by algorithm A
OPT(p) - optimal solution of the problem

Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n

 For algorithm A that minimizes objective

function (minimization algorithm):

 max|p| = n A(p) / OPT(p)

Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n

 For algorithm A that minimizes objective

function (minimization algorithm):

 max|p| = n A(p) / OPT(p)

 For maximization algorithm:

 min|p| = n A(p) / OPT(p)

p = p1p2p3…pn-1pn

 A pair of elements p i and p i + 1 are adjacent if

pi+1 = pi + 1

 For example:

p = 1 9 3 4 7 8 2 6 5

 (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints

There is a breakpoint between any adjacent
element that are non-consecutive:

p = 1 9 3 4 7 8 2 6 5

 Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form
breakpoints of permutation p

 b(p) - # breakpoints in permutation p

Breakpoints

Adjacency & Breakpoints

•An adjacency - a pair of adjacent elements that are consecutive

•A breakpoint - a pair of adjacent elements that are not

consecutive

π = 5 6 2 1 3 4

0 5 6 2 1 3 4 7

adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7

 We put two elements p 0 =0 and p n + 1=n+1 at

the ends of p

Example:

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

p = 1 9 3 4 7 8 2 6 5

p = 0 1 9 3 4 7 8 2 6 5 10

 Each reversal eliminates at most 2 breakpoints.

p = 2 3 1 4 6 5

0 2 3 1 4 6 5 7 b(p) = 5

0 1 3 2 4 6 5 7 b(p) = 4

0 1 2 3 4 6 5 7 b(p) = 2

0 1 2 3 4 5 6 7 b(p) = 0

Reversal Distance and Breakpoints

 Each reversal eliminates at most 2 breakpoints.

 This implies:

reversal distance ≥ #breakpoints / 2

p = 2 3 1 4 6 5

0 2 3 1 4 6 5 7 b(p) = 5

0 1 3 2 4 6 5 7 b(p) = 4

0 1 2 3 4 6 5 7 b(p) = 2

0 1 2 3 4 5 6 7 b(p) = 0

Reversal Distance and Breakpoints

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,
choose reversal r minimizing b(p • r)

3 p p • r(i, j)

4 output p

5 return

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,
choose reversal r minimizing b(p • r)

3 p p • r(i, j)

4 output p

5 return

Problem: this algorithm may work forever

Strips

 Strip: an interval between two consecutive
breakpoints in a permutation

 Decreasing strip: strip of elements in
decreasing order (e.g. 6 5 and 3 2).

 Increasing strip: strip of elements in increasing
order (e.g. 7 8)

0 1 9 4 3 7 8 2 5 6 10

 A single-element strip can be declared either increasing or
decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+1

Reducing the Number of Breakpoints

Theorem 1:

If permutation p contains at least one

decreasing strip, then there exists a

reversal r which decreases the number of

breakpoints (i.e. b(p • r) < b(p))

Things To Consider

 For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

 Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

 Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

 Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

 Find k – 1 in the permutation

Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

 Choose decreasing strip with the smallest
element k in p (k = 2 in this case)

 Find k – 1 in the permutation

 Reverse the segment between k and k-1:

 0 1 4 6 5 7 8 3 2 9 b(p) = 5

 0 1 2 3 8 7 5 6 4 9 b(p) = 4

Reducing the Number of Breakpoints

Again

 If there is no decreasing strip, there may be
no reversal r that reduces the number of
breakpoints (i.e. b(p • r) ≥ b(p) for any
reversal r).

 By reversing an increasing strip (# of
breakpoints stay unchanged), we will create
a decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

Things To Consider (cont’d)

 There are no decreasing strips in p, for:

p = 0 1 2 5 6 7 3 4 8 b(p) = 3

p • r(6,7) = 0 1 2 5 6 7 4 3 8 b(p) = 3

 r(6,7) does not change the # of breakpoints

 r(6,7) creates a decreasing strip thus
guaranteeing that the next step will decrease
the # of breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2 if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that minimizes b(p • r)

4 else
5 Choose a reversal r that flips an increasing strip in p

6 p p • r

7 output p
8 return

 ImprovedBreakPointReversalSort is an

approximation algorithm with a performance

guarantee of at most 4

 It eliminates at least one breakpoint in every two

steps; at most 2b(p) steps

 Approximation ratio: 2b(p) / d(p)

 Optimal algorithm eliminates at most 2

breakpoints in every step: d(p) b(p) / 2

 Performance guarantee:

 (2b(p) / d(p)) [2b(p) / (b(p) / 2)] = 4

ImprovedBreakpointReversalSort:

Performance Guarantee

