CS481: Bioinformatics Algorithms

> Can Alkan EA509 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

GENOME REARRANGEMENTS

Turnip vs Cabbage: Look and Taste Different

Although cabbages and turnips share a recent common ancestor, they look and taste different

Turnip vs Cabbage: Almost Identical mtDNA gene sequences

- In 1980s Jeffrey Palmer studied evolution of plant organelles by comparing mitochondrial genomes of the cabbage and turnip
- 99% similarity between genes
- These surprisingly identical gene sequences differed in gene order
- This study helped pave the way to analyzing genome rearrangements in molecular evolution

Gene order comparison:

Evolution is manifested as the divergence in gene order

Transforming Cabbage into Turnip

- What are the similarity blocks and how to find them?
- What is the architecture of the ancestral genome?
- What is the evolutionary scenario for transforming one genome into the other?

History of Chromosome X

Rat Consortium, Nature, 2004

articles

Genome sequence of the Brown Norway rat yields insights into mammalian evolution

Rat Genome Sequencing Project Consortium*

*Lists of participants and affiliations appear at the end of the paper

Analysis and annotation: Affymetrix Simon Cawley¹⁹; **Baylor College of Medicine** George M. Weinstock (Coordinator)¹, Kim C. Worley (Overall Coordinator)¹, A. J. Cooney²⁰, Richard A. Gibbs¹, Lisa M. D'Souza¹, Kirt Martin¹, Jia Qian Wu¹, Manuel L. Gonzalez-Garay¹, Andrew R. Jackson¹, Kenneth J. Kalafus^{1,58}, Michael P. McLeod¹, Aleksandar Milosavljevic¹, Davinder Vick¹, Andrei Volkov¹, David A. Wheeler¹, Zhengdong Zhang¹; **Case Western Reserve University** Jeffrey A. Bailey⁴, Evan E. Eichler⁴, Eray Tuzun⁴; **EVI, Wellcome Trust Genome Campus** Ewan Birney²¹, Emmanuel Mongin²¹, Abel Ureta-Vidal²¹, Cara Woodwark²¹; **EMBL, Heidelberg Evgeny** Zdobnov²², Peer Bork^{22,23}, Mikita Suyama²², David Torrents²²; **Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg** Marina Alexandersson²⁴;

Reversals

Blocks represent conserved genes.

Reversals

- Blocks represent conserved genes.
- In the course of evolution or in a clinical context, blocks 1,...,10 could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.

Reversals and Breakpoints

The reversion introduced two *breakpoints* (disruptions in order).

Reversals: Example

Comparative Genomic Architectures: Mouse vs Human Genome

- Humans and mice have similar genomes, but their genes are ordered differently
- ~245 rearrangements
 - Reversals
 - Fusions
 - Fissions
 - Translocation

Reversals: Example

Reversals: Example

Reversals and Gene Orders

Gene order is represented by a permutation *π*:

$$\pi = \pi_{1} - \pi_{i-1} \frac{\pi_{i} \pi_{i+1} - \pi_{j-1} \pi_{j} \pi_{j+1} - \pi_{n}}{\rho(i,j)}$$

$$\pi_{1} - \pi_{i-1} \frac{\pi_{i} \pi_{j-1} - \pi_{i+1} \pi_{i} \pi_{j+1} - \pi_{n}}{\pi_{i} \pi_{j+1} - \pi_{n}}$$
Reversal $\rho(i, j)$ reverses (flips) the

elements from *i* to *j* in π

Reversal Distance Problem

- <u>Goal</u>: Given two permutations, find the shortest series of reversals that transforms one into another
- Input: Permutations π and σ
- <u>Output</u>: A series of reversals ρ_1, \dots, ρ_t transforming π into σ , such that *t* is minimum
- *t* reversal distance between π and σ
- $d(\pi, \sigma)$ smallest possible value of t, given π and σ

Sorting By Reversals Problem

- <u>Goal</u>: Given a permutation, find a shortest series of reversals that transforms it into the identity permutation (1 2 ... n)
- **Input:** Permutation π
- <u>Output</u>: A series of reversals ρ_1, \dots, ρ_t transforming π into the identity permutation such that *t* is minimum

Sorting By Reversals: Example

t =d(π) - reversal distance of π
Example :

So $d(\pi) = 3$

Sorting by reversals: 5 steps

Step 0: π 2-4-35-8-7-61Step 1:2345-8-7-61Step 2:23456781Step 3:2345678-1Step 4:-8-7-6-5-4-3-2-1Step 5: γ 12345678

Sorting by reversals: 4 steps

Step 0: π 2-4-35-8-7-61Step 1:2345-8-7-61Step 2:-5-4-3-2-8-7-61Step 3:-5-4-3-2-1678Step 4: γ 12345678

Pancake Flipping Problem

- The chef is sloppy; he prepares an unordered stack of pancakes of different sizes
- The waiter wants to rearrange them (so that the smallest winds up on top, and so on, down to the largest at the bottom)
- He does it by flipping over several from the top, repeating this as many times as necessary

Christos Papadimitrou and William H. Gates flip pancakes

Pancake Flipping Problem: Formulation

- Goal: Given a stack of *n* pancakes, what is the minimum number of flips to rearrange them into perfect stack?
- **Input:** Permutation π
- <u>Output</u>: A series of prefix reversals $\rho_1, \dots \rho_t$ transforming π into the identity permutation such that *t* is minimum

Pancake Flipping Problem: Greedy Algorithm

- Greedy approach: 2 prefix reversals at most to place a pancake in its right position, 2n – 2 steps total at most
- William Gates and Christos Papadimitriou showed in the mid-1970s that this problem can be solved by at most 5/3 (n + 1) prefix reversals

Sorting By Reversals: A Greedy Algorithm

- If sorting permutation $\pi = 1 \ 2 \ 3 \ 6 \ 4 \ 5$, the first three elements are already in order so it does not make any sense to break them.
- The length of the already sorted prefix of π is denoted *prefix*(π)

•
$$prefix(\pi) = 3$$

 This results in an idea for a greedy algorithm: increase prefix(π) at every step Greedy Algorithm: An Example

Doing so, π can be sorted

 Number of steps to sort permutation of length n is at most (n – 1)

Greedy Algorithm: Pseudocode

<u>SimpleReversalSort(π)</u>

- 1 **for** *i* ← *l* to *n* − *l*
- 2 $j \leftarrow \text{position of element } i \text{ in } \pi \text{ (i.e., } \pi_j = i)$
- 3 **if** *j* ≠ *i*
- $4 \qquad \pi \leftarrow \pi * \rho(i, j)$
- 5 **output** π
- 6 **if** π is the identity permutation
- 7 return

Analyzing SimpleReversalSort

- SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5$:
 - Step 1: 1 6 2 3 4 5
 - Step 2: 1 2 6 3 4 5
 - Step 3: 1 2 3 6 4 5
 - Step 4: 1 2 3 4 6 5
 - Step 5: 1 2 3 4 5 6

Analyzing SimpleReversalSort (cont'd)

But it can be sorted in two steps:

- π = 6 1 2 3 4 5
- □ Step 1: 5 4 3 2 1 6
- □ Step 2: 1 2 3 4 5 6
- So, SimpleReversalSort(π) is not optimal
- Optimal poly-time algorithms are unknown for NP-hard problems; approximation algorithms are used

Approximation Algorithms

- These algorithms find approximate solutions rather than optimal solutions
- The approximation ratio of an algorithm A on input π is:

$$A(\pi) / OPT(\pi)$$

where

A(π) - solution produced by algorithm A OPT(π) - optimal solution of the problem

Approximation Ratio/Performance Guarantee

- Approximation ratio (performance guarantee) of algorithm A: max approximation ratio of all inputs of size n
 - For algorithm A that minimizes objective function (minimization algorithm):

•
$$\max_{|\pi| = n} A(\pi) / OPT(\pi)$$

Approximation Ratio/Performance Guarantee

- Approximation ratio (performance guarantee) of algorithm A: max approximation ratio of all inputs of size n
 - For algorithm A that minimizes objective function (minimization algorithm):

•
$$\max_{|\pi| = n} A(\pi) / OPT(\pi)$$

For maximization algorithm:

•
$$\min_{|\pi| = n} A(\pi) / OPT(\pi)$$

Adjacencies and Breakpoints

 $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_{n-1} \pi_n$

• A pair of elements π_i and π_{i+1} are adjacent if

$$\pi_{i+1} = \pi_i + 1$$

For example:

 $\pi = 1 \ 9 \ \underline{3} \ \underline{4} \ \underline{7} \ \underline{8} \ 2 \ \underline{6} \ \underline{5}$

(3, 4) or (7, 8) and (6,5) are adjacent pairs

Breakpoints

There is a breakpoint between any adjacent element that are non-consecutive:

$\pi = 1 \ 9 \ 3 \ 4 \ 7 \ 8 \ 2 \ 6 \ 5$

- Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form breakpoints of permutation π
- $b(\pi)$ # breakpoints in permutation π

Adjacency & Breakpoints

- •An adjacency a pair of adjacent elements that are consecutive
- A breakpoint a pair of adjacent elements that are not consecutive

$$\pi = 5 \ 6 \ 2 \ 1 \ 3 \ 4 \longrightarrow \text{Extend } \pi \text{ with } \pi_0 = 0 \text{ and } \pi_7 = 7$$

$$adjacencies$$

$$0 \ 5 \ 6 \ 2 \ 1 \ 3 \ 4 \ 7$$

$$breakpoints$$

Extending Permutations

• We put two elements $\pi_0 = 0$ and $\pi_{n+1} = n+1$ at the ends of π

Example:

Note: A new breakpoint was created after extending

Reversal Distance and Breakpoints

Each reversal eliminates at most 2 breakpoints.

 $b(\pi) = 5$

 $b(\pi) = 4$

 $b(\pi) = 2$

 $b(\pi) = 0$

Reversal Distance and Breakpoints

- Each reversal eliminates at most 2 breakpoints.
- This implies:

reversal distance ≥ #breakpoints / 2 π = 2 3 1 4 6 50 2 3 1 4 6 50 2 3 1 4 6 5 7b(π) = 50 1 3 2 4 6 5 7b(π) = 40 1 2 3 4 6 5 7b(π) = 20 1 2 3 4 5 6 7

Sorting By Reversals: A Better Greedy Algorithm

<u>BreakPointReversalSort(π)</u>

- 1 while $b(\pi) > 0$
- 2 Among all possible reversals, choose reversal ρ minimizing $b(\pi \cdot \rho)$

3
$$\pi \leftarrow \pi \cdot \rho(i, j)$$

- 4 output π
- 5 return

Sorting By Reversals: A Better Greedy Algorithm

<u>BreakPointReversalSort(π)</u>

- 1 while $b(\pi) > 0$
- 2 Among all possible reversals, choose reversal ρ minimizing $b(\pi \cdot \rho)$

3
$$\pi \leftarrow \pi \cdot \rho(i, j)$$

- 4 output π
- 5 return

Problem: this algorithm may work forever

- Strip: an interval between two consecutive breakpoints in a permutation
 - Decreasing strip: strip of elements in decreasing order (e.g. 6 5 and 3 2).
 - Increasing strip: strip of elements in increasing order (e.g. 7 8)

<u>0 1 9 4 3 7 8 2 5 6 10</u>

 A single-element strip can be declared either increasing or decreasing. We will choose to declare them as decreasing with exception of the strips with 0 and n+1 Reducing the Number of Breakpoints

Theorem 1:

If permutation π contains at least one decreasing strip, then there exists a reversal ρ which decreases the number of breakpoints (i.e. $b(\pi \cdot \rho) < b(\pi)$)

Things To Consider

For π = 1 4 6 5 7 8 3 2 0 1 4 6 5 7 8 3 2 9 b(π) = 5 Choose decreasing strip with the smallest element k in π (k = 2 in this case)

For π = 1 4 6 5 7 8 3 2 0 1 4 6 5 7 8 3 2 9 b(π) = 5 Choose decreasing strip with the smallest element k in π (k = 2 in this case)

• For $\pi = 1\ 4\ 6\ 5\ 7\ 8\ 3\ 2$ 0 1 4 6 5 7 8 3 2 $b(\pi) = 5$

- Choose decreasing strip with the smallest element k in π (k = 2 in this case)
- Find k 1 in the permutation

• For $\pi = 14657832$

0 1 4 6 5 7 8 3 2 9 $b(\pi) = 5$

- Choose decreasing strip with the smallest element k in π (k = 2 in this case)
- Find k 1 in the permutation
- Reverse the segment between *k* and *k-1*: ■ 0 1 4 6 5 7 8 3 2 9 $b(\pi) = 5$ ■ 0 1 2 3 8 7 5 6 4 9 $b(\pi) = 4$

Reducing the Number of Breakpoints Again

- If there is no decreasing strip, there may be no reversal ρ that reduces the number of breakpoints (i.e. b(π ρ) ≥ b(π) for any reversal ρ).
- By reversing an increasing strip (# of breakpoints stay unchanged), we will create a decreasing strip at the next step. Then the number of breakpoints will be reduced in the next step (theorem 1).

• There are no decreasing strips in π , for:

$$\pi = 0 \ 1 \ 2 \ 5 \ 6 \ 7 \ 3 \ 4 \ 8 \ b(\pi) = 3$$

$$\pi \bullet \rho(6,7) = 0 \ 1 \ 2 \ 5 \ 6 \ 7 \ 4 \ 3 \ 8 \ b(\pi) = 3$$

 ρ(6,7) does not change the # of breakpoints

 ρ(6,7) creates a decreasing strip thus
 guaranteeing that the next step will decrease
 the # of breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(π)

- 1 while $b(\pi) > 0$
- 2 if π has a decreasing strip
- Among all possible reversals, choose reversal ρ

that minimizes $b(\pi \bullet \rho)$

4 else

5 Choose a reversal ρ that flips an increasing strip in π

$$6 \quad \pi \leftarrow \pi \bullet \rho$$

- 7 output π
- 8 return

ImprovedBreakpointReversalSort: Performance Guarantee

- ImprovedBreakPointReversalSort is an approximation algorithm with a performance guarantee of at most 4
 - It eliminates at least one breakpoint in every two steps; at most 2b(π) steps
 - Approximation ratio: $2b(\pi) / d(\pi)$
 - □ Optimal algorithm eliminates at most 2 breakpoints in every step: $d(\pi) \ge b(\pi) / 2$
 - Performance guarantee:
 - $(2b(\pi) / d(\pi)) \ge [2b(\pi) / (b(\pi) / 2)] = 4$