
CS481: Bioinformatics

Algorithms

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

GENOME

REARRANGEMENTS

Turnip vs Cabbage: Look and Taste Different

 Although cabbages and turnips share a recent

common ancestor, they look and taste different

Turnip vs Cabbage: Almost Identical mtDNA

gene sequences

 In 1980s Jeffrey Palmer studied evolution
of plant organelles by comparing
mitochondrial genomes of the cabbage and
turnip

 99% similarity between genes

 These surprisingly identical gene
sequences differed in gene order

 This study helped pave the way to
analyzing genome rearrangements in
molecular evolution

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Similarity blocks

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Before

After

Evolution is manifested as the divergence

in gene order

Transforming Cabbage into Turnip

What are the similarity blocks and how to find
them?

What is the architecture of the ancestral
genome?

What is the evolutionary scenario for
transforming one genome into the other?

Unknown ancestor

~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements

History of Chromosome X

Rat Consortium, Nature, 2004

Reversals

 Blocks represent conserved genes.

1 32

4

10

5
6

8

9

7

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Reversals

1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

 Blocks represent conserved genes.

 In the course of evolution or in a clinical context, blocks
1,…,10 could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9,
10.

Reversals and Breakpoints

1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).

Reversals: Example

5’ ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break

and

Invert

Types of Rearrangements

Reversal

1 2 3 4 5 6 1 2 -5 -4 -3 6

Translocation
1 2 3

4 5 6

1 2 6

4 5 3

1 2 3 4

5 6
1 2 3 4 5 6

Fusion

Fission

Comparative Genomic Architectures:

Mouse vs Human Genome

 Humans and mice

have similar genomes,

but their genes are

ordered differently

 ~245 rearrangements

 Reversals

 Fusions

 Fissions

 Translocation

Human chromosome 2

Reversals: Example

p = 1 2 3 4 5 6 7 8

r(3,5)

1 2 5 4 3 6 7 8

Reversals: Example

p = 1 2 3 4 5 6 7 8

r(3,5)

1 2 5 4 3 6 7 8

r(5,6)

1 2 5 4 6 3 7 8

Reversals and Gene Orders

 Gene order is represented by a

permutation p:

p = p 1 ------ p i-1 p i p i+1 ------ p j-1 p j p j+1 ----- p n

p 1 ------ p i-1 p j p j-1 ------ p i+1 p i p j+1 ----- pn

 Reversal r (i, j) reverses (flips) the

elements from i to j in p

r(i,j)

Reversal Distance Problem

 Goal: Given two permutations, find the shortest
series of reversals that transforms one into another

 Input: Permutations p and s

 Output: A series of reversals r1,…rt transforming p
into s, such that t is minimum

 t - reversal distance between p and s

 d(p, s) - smallest possible value of t, given p and s

Sorting By Reversals Problem

 Goal: Given a permutation, find a shortest
series of reversals that transforms it into the
identity permutation (1 2 … n)

 Input: Permutation p

 Output: A series of reversals r1, … rt
transforming p into the identity permutation
such that t is minimum

Sorting By Reversals: Example

 t =d(p) - reversal distance of p
 Example :

p = 3 4 2 1 5 6 7 10 9 8

4 3 2 1 5 6 7 10 9 8

4 3 2 1 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

So d(p) = 3

Sorting by reversals: 5 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: g 1 2 3 4 5 6 7 8

Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: g 1 2 3 4 5 6 7 8

Pancake Flipping Problem

 The chef is sloppy; he

prepares an unordered stack

of pancakes of different sizes

 The waiter wants to

rearrange them (so that the

smallest winds up on top,

and so on, down to the

largest at the bottom)

 He does it by flipping over

several from the top,

repeating this as many times

as necessary

Christos Papadimitrou and

William H. Gates flip

pancakes

Pancake Flipping Problem: Formulation

 Goal: Given a stack of n pancakes, what is

the minimum number of flips to rearrange

them into perfect stack?

 Input: Permutation p

 Output: A series of prefix reversals r1, … rt

transforming p into the identity permutation

such that t is minimum

Pancake Flipping Problem: Greedy Algorithm

 Greedy approach: 2 prefix reversals at most

to place a pancake in its right position, 2n – 2

steps total at most

 William Gates and Christos Papadimitriou

showed in the mid-1970s that this problem

can be solved by at most 5/3 (n + 1) prefix

reversals

Sorting By Reversals: A Greedy Algorithm

 If sorting permutation p = 1 2 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

 The length of the already sorted prefix of p is
denoted prefix(p)

 prefix(p) = 3

 This results in an idea for a greedy algorithm:
increase prefix(p) at every step

 Doing so, p can be sorted

1 2 3 6 4 5

1 2 3 4 6 5

1 2 3 4 5 6

 Number of steps to sort permutation of
length n is at most (n – 1)

Greedy Algorithm: An Example

Greedy Algorithm: Pseudocode

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3 if j ≠i

4 p  p * r(i, j)

5 output p

6 if p is the identity permutation

7 return

Analyzing SimpleReversalSort

 SimpleReversalSort does not guarantee the
smallest number of reversals and takes five
steps on p = 6 1 2 3 4 5 :

 Step 1: 1 6 2 3 4 5

 Step 2: 1 2 6 3 4 5

 Step 3: 1 2 3 6 4 5

 Step 4: 1 2 3 4 6 5

 Step 5: 1 2 3 4 5 6

 But it can be sorted in two steps:

p = 6 1 2 3 4 5

 Step 1: 5 4 3 2 1 6

 Step 2: 1 2 3 4 5 6

 So, SimpleReversalSort(p) is not optimal

 Optimal poly-time algorithms are unknown for

NP-hard problems; approximation algorithms

are used

Analyzing SimpleReversalSort (cont’d)

Approximation Algorithms

 These algorithms find approximate solutions
rather than optimal solutions

 The approximation ratio of an algorithm A on
input p is:

A(p) / OPT(p)

where

A(p) - solution produced by algorithm A
OPT(p) - optimal solution of the problem

Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n

 For algorithm A that minimizes objective

function (minimization algorithm):

 max|p| = n A(p) / OPT(p)

Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n

 For algorithm A that minimizes objective

function (minimization algorithm):

 max|p| = n A(p) / OPT(p)

 For maximization algorithm:

 min|p| = n A(p) / OPT(p)

p = p1p2p3…pn-1pn

 A pair of elements p i and p i + 1 are adjacent if

pi+1 = pi + 1

 For example:

p = 1 9 3 4 7 8 2 6 5

 (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints

There is a breakpoint between any adjacent
element that are non-consecutive:

p = 1 9 3 4 7 8 2 6 5

 Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form
breakpoints of permutation p

 b(p) - # breakpoints in permutation p

Breakpoints

Adjacency & Breakpoints

•An adjacency - a pair of adjacent elements that are consecutive

•A breakpoint - a pair of adjacent elements that are not

consecutive

π = 5 6 2 1 3 4

0 5 6 2 1 3 4 7

adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7

 We put two elements p 0 =0 and p n + 1=n+1 at

the ends of p

Example:

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

p = 1 9 3 4 7 8 2 6 5

p = 0 1 9 3 4 7 8 2 6 5 10

 Each reversal eliminates at most 2 breakpoints.

p = 2 3 1 4 6 5

0 2 3 1 4 6 5 7 b(p) = 5

0 1 3 2 4 6 5 7 b(p) = 4

0 1 2 3 4 6 5 7 b(p) = 2

0 1 2 3 4 5 6 7 b(p) = 0

Reversal Distance and Breakpoints

 Each reversal eliminates at most 2 breakpoints.

 This implies:

reversal distance ≥ #breakpoints / 2

p = 2 3 1 4 6 5

0 2 3 1 4 6 5 7 b(p) = 5

0 1 3 2 4 6 5 7 b(p) = 4

0 1 2 3 4 6 5 7 b(p) = 2

0 1 2 3 4 5 6 7 b(p) = 0

Reversal Distance and Breakpoints

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return

Problem: this algorithm may work forever

Strips

 Strip: an interval between two consecutive
breakpoints in a permutation

 Decreasing strip: strip of elements in
decreasing order (e.g. 6 5 and 3 2).

 Increasing strip: strip of elements in increasing
order (e.g. 7 8)

0 1 9 4 3 7 8 2 5 6 10

 A single-element strip can be declared either increasing or
decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+1

Reducing the Number of Breakpoints

Theorem 1:

If permutation p contains at least one

decreasing strip, then there exists a

reversal r which decreases the number of

breakpoints (i.e. b(p • r) < b(p))

Things To Consider

 For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

 Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

 Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

 Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

 Find k – 1 in the permutation

Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

 Choose decreasing strip with the smallest
element k in p (k = 2 in this case)

 Find k – 1 in the permutation

 Reverse the segment between k and k-1:

 0 1 4 6 5 7 8 3 2 9 b(p) = 5

 0 1 2 3 8 7 5 6 4 9 b(p) = 4

Reducing the Number of Breakpoints

Again

 If there is no decreasing strip, there may be
no reversal r that reduces the number of
breakpoints (i.e. b(p • r) ≥ b(p) for any
reversal r).

 By reversing an increasing strip (# of
breakpoints stay unchanged), we will create
a decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

Things To Consider (cont’d)

 There are no decreasing strips in p, for:

p = 0 1 2 5 6 7 3 4 8 b(p) = 3

p • r(6,7) = 0 1 2 5 6 7 4 3 8 b(p) = 3

 r(6,7) does not change the # of breakpoints

 r(6,7) creates a decreasing strip thus
guaranteeing that the next step will decrease
the # of breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2 if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that minimizes b(p • r)

4 else
5 Choose a reversal r that flips an increasing strip in p

6 p  p • r

7 output p
8 return

 ImprovedBreakPointReversalSort is an

approximation algorithm with a performance

guarantee of at most 4

 It eliminates at least one breakpoint in every two

steps; at most 2b(p) steps

 Approximation ratio: 2b(p) / d(p)

 Optimal algorithm eliminates at most 2

breakpoints in every step: d(p)  b(p) / 2

 Performance guarantee:

 (2b(p) / d(p))  [2b(p) / (b(p) / 2)] = 4

ImprovedBreakpointReversalSort:

Performance Guarantee

