CS481: Bioinformatics
Algorithms

Can Alkan
EA509
calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

GENOME
REARRANGEMENTS

Turnip vs Cabbage: LLook and Taste Different

= Although cabbages and turnips share a recent
common ancestor, they look and taste different

Turnip vs Cabbage: Almost Identical mtDNA

gene sequences

In 1980s Jeffrey Palmer studied evolution
of plant organelles by comparing
mitochondrial genomes of the cabbage and
turnip

99% similarity between genes

These surprisingly identical gene
sequences differed in gene order

This study helped pave the way to
analyzing genome rearrangements in
molecular evolution

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

D-“-b

¢

Similarity blocks

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

B 4

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

B 4

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

Y 4

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

e | G

j <

Evolution is manifested as the divergence
in gene order

Transtorming Cabbage into Turnip

B.oleracea 15 4 a3 1
(cabbage) T
TR ’:;{" 72
—] I-i_._.-!_ g '4 ., '3 = _E"_r
i
B. campestris —_— T
(turnip) — ————— . .

(GGenome rearrangements

Mouse (X chrom.)
- —— - —TEE-ee——

Unknown ancestor /
~ 75 million years ago \

— (- > —— > —
Human (X chrom.)

What are the similarity blocks and how to find
them?

What is the architecture of the ancestral
genome?

What is the evolutionary scenario for
transforming one genome into the other?

‘History of Chromosome X

e o == Placental Ancestor
D, AN Te—
ey A
i / 4
O ID) Human-Mouse-Rat Ancestar =5 Yy

YY) YD)
i

KITTIN I I
{4400 IDIIDEE

Mouse-Rat Ancestor —

N HHDIND (CTIX CKKRSI X XD
(@O0 @O
A GIDIDIID @OIIRHDTIND

@OV DIN 1 @D
RPN IDIDND I XX PXOI0Y) (LIX IR X 1)

Human Mouse

Rat Consortium, Nature, 2004

[

articles

Genome sequence of the Brown
Norway rat yields insights into
mammalian evolution

Rat Genome Sequencing Project Consortium*

@1“# affiliations appear at the end of the paper

Analysis and annotation: Affymetrix Simon Cawley'®; Baylor College of Medicine George M. Weinstock (Coordinator)’, Kim C. Worley
(Overall Coordinator)', A. J. Cooney™, Richard A. Gibbs', Lisa M. D'Souza’, Kirt Martin', Jia Qian Wu', Manual L. Gonzalez-Garay',
Andrew R. Jackson', Kenneth J. Kalafus'®, Michael P. McLeod', Aleksandar Milosavijeyi i
Zhengdong Zhang'; l‘.'.lu Western Hum University Jeffrey A. Bailey*, Evan E. Eichlag®, Eray Tuzun*; El, Wellcome Trust Genome Campus
Ewan Bimey*', Emmanuel Mongin®', Abel Ureta-Vidal*', Cara Woodwark®'; EMBL, Heidelbefy-Evgery-Z0obnov™, Peer Bork™*, Mikita Suyama®,
David Torrents®; Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gﬂﬂlmhurg Marina Alexandersson®*;

Reversals

1,2,3,4,5,6, 7, 8,9,1

= Blocks represent conserved genes.

Reversals

1,2,3,-8,-7,-6,-5,-4,9,1

Blocks represent conserved genes.

In the course of evolution or in a clinical context, blocks
1,...,10 could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9,
10.

Reversals and Breakpoints

1,2,3,-8,-7,-6,-5,-4,9,1

The reversion introduced two breakpoints
(disruptions in order).

‘ Reversals: Example

5’ ATGCCTGTACTA 3’
3" TACGGACATGAT 5’

l

5’ ATGTACAGGCTA 3’
3' TACATGTCCGAT 5’

Types ot Rearrangements

Reversal
12345 P 12-5-4-36

Translocation

‘ 126

3
6 4 53

Fusion

1234 mmp
123456
5 6 <{—

Fission

Comparative Genomic Architectures:
Mouse vs Human Genome

Human chromosomes

have similar genomes,
but their genes are
ordered differently

~245 rearrangements

Humans and mice I

o Reversals ﬁ E E IZ ﬂi H; E % %
: SEOE N W RO [)°
o Fusions -
o Fissions E:* EE FEEEFSE
. & i B
o Translocation i

Human chromosome 2

177, 111,
117,
ALY

Gorilla Chimpanzee Human

A

A A
777] l[\

C Anc GPH Anc PH Anc H Anc

N <X <C-HODIDTOZ 2-rxC — I 6O T MOOD>»
a
w

‘ Reversals: Example

n=12345678

p(3,5) l

12543678

‘ Reversals: Example

n=123456738

p(3,5) l
12543678
p(5,6) }

12546378

Reversals and Gene Orders

Gene order is represented by a
permutation z:

T =7 i1 i Wit mmeee AN R AR AT — 7T n
p(ij)
72— AN R pa— Cit1 705 7041 e 7Ta

Reversal p (1, j) reverses (flips) the
elements fromijtojin z

Reversal Distance Problem

Goal: Given two permutations, find the shortest
series of reversals that transforms one into another

Input: Permutations zand o

Output: A series of reversals p;,...p;transforming
INnto o, such that fis minimum

f - reversal distance between rand o
d(r, o) - smallest possible value of t, given rand ¢

Sorting By Reversals Problem

Goal: Given a permutation, find a shortest

series of reversals that transforms it into the
identity permutation (7 2 ... n)

Input: Permutation =

Output: A series of reversals p
transforming zinto the |dent|ty permutatlon
such that t Is minimum

Sorting By Reversals: Example

t =d(x) - reversal distance of =

Example :
7 =3421567 10 9 8
4 3215 67 109 8
4 321567 8 910
1234567 8910

Sod(n)=3

‘ Sorting by reversals: 5 steps

Step 0: «
Step 1:
Step 2:
Step 3:
Step 4:
Step 5: v

2-4-3 5-8-7-6
2 3 4 5-8-7-6
2 3 45 06 7 8
2 3 45 6 7 8-
8-/ -6-5-4-3-2-
12 3 45 6 7 8

‘ Sorting by reversals: 4 steps

StepO:t 2 -4 -3 5-8 -7 -6
Step 1: 2 3 4 5-8-7 -6
Step2: -5 -4 -3-2-8-7-6
Step3: -5-4-3-2-1 6 7 8
Step4d:y 1 2 3 4 5 6 7 8

Pancake Flipping Problem

The chef is sloppy; he
prepares an unordered stack
of pancakes of different sizes

The waiter wants to
rearrange them (so that the
smallest winds up on top,
and so on, down to the
largest at the bottom)

He does it by flipping over
several from the top,
repeating this as many times
as necessary

Christos Papadimitrou and
William H. Gates flip
pancakes

Pancake Flipping Problem: Formulation

Goal: Given a stack of n pancakes, what is
the minimum number of flips to rearrange
them into perfect stack?

Input: Permutation 7

Output: A series of prefix reversals p., ... p;
transforming =z into the identity permutation
such that f is minimum

Pancake Flipping Problem: Greedy Algorithm

Greedy approach: 2 prefix reversals at most
to place a pancake in its right position, 2n — 2
steps total at most

William Gates and Christos Papadimitriou
showed in the mid-1970s that this problem
can be solved by at most 5/3 (n + 1) prefix
reversals

Sorting By Reversals: A Greedy Algorithm

If sorting permutation 7=12 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

The length of the already sorted prefix of xis
denoted prefix(r)

o prefix(z) = 3
This results in an idea for a greedy algorithm:
increase prefix(r) at every step

Greedy Algorithm: An Example

Doing so, 7 can be sorted

123645

l

123465

l

123456

Number of steps to sort permutation of
length n is at most (n — 1)

Greedy Algorithm: Pseudocode

SimpleReversalSort(z)

1 for /€& Jton-1

2 j € position of element /in z(i.e., ;= /)
3 if j#i

4 & ™ pli,)
5 output =
6

7/

if 7is the identity permutation
return

Analyzing SimpleReversalSort

SimpleReversalSort does not guarantee the
smallest number of reversals and takes five
stepson 7=612345:

Step1: 162345
Step 2: 126345
Step 3: 123645
Step4: 123465
Step 5: 123456

Analyzing SimpleReversalSort (contd)

But it can be sorted in two steps:
7 =0612345

aStepl1: 543216
aStep 2: 123456

So, SimpleReversalSort(r) is not optimal

Optimal poly-time algorithms are unknown for
NP-hard problems; approximation algorithms
are used

Approximation Algorithms

These algorithms find approximate solutions
rather than optimal solutions

The approximation ratio of an algorithm A on
input 7 Is:

A(rn) / OPT(x)
where

A(r) - solution produced by algorithm A
OPT(x) - optimal solution of the problem

Approximation Ratio/Performance Guarantee

Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all
inputs of size n

o For algorithm A that minimizes objective
function (minimization algorithm):

max, , _ , A(n) / OPT(n)

Approximation Ratio/Performance Guarantee

Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all
inputs of size n

o For algorithm A that minimizes objective
function (minimization algorithm):

0 For maximization algorithm:

Adjacencies and Breakpoints

U= T 7073+ - - Tn_17n
A pair of elements r,and r,;, ,are adjacent if
g = 7 * 1
For example:
=1 93478265
(3, 4) or (7, 8) and (6,5) are adjacent pairs

Breakpoints

There is a breakpoint between any adjacent
element that are non-consecutive:

7=1|9|3 4|7 8|2|6 5
Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form

breakpoints of permutation =
b(7x) - # breakpoints in permutation =

Adjacency & Breakpoints

*An adjacency - a pair of adjacent elements that are consecutive

* A breakpoint - a pair of adjacent elements that are not
consecutive

n=562134 > Extend m with ty =0 and n, =7

adjacencies

0 5l6 2l1 3l4 7
f Pt f

breakpoints

Extending Permutations

We put two elements 7 ,=0and =, , ,=n+1 at
the ends of =

Example:

n=1|9/3 4/7 8/2/6 5

l Extending with 0 and 710

n=011[9/3 4|7 8/2[6 5 10
Note: A new breakpoint was created after extending

Reversal Distance and Breakpoints

Each reversal eliminates at most 2 breakpoints.

7=231465

012 3l1lale 517 b(n) =5
0113 2l4l6 5|7 b(7) = 4
01234|65|7 b(7) = 2
01234567 b(7) = 0

Reversal Distance and Breakpoints

Each reversal eliminates at most 2 breakpoints.
This implies:

reversal distance = #breakpoints / 2
7=23140605

0|2 3|1]4]6 5|7 b(z) =5
01|13 2146 5|7 b(7) = 4
012341657 b(n) = 2
01234567 b(z) =0

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(x)
1 while 6(n) > 0O

2 Among all possible reversals,
choose reversal p minimizing b(x* p)

3 € 7w pli,))
4 output
5 return

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(x)
1 while 6(n) > 0O

2 Among all possible reversals,
choose reversal p minimizing b(x* p)

3 € 7w pli,))
4 output
5 return

Problem: this algorithm may work forever

Strips

Strip: an interval between two consecutive
breakpoints in a permutation

o Decreasing strip: strip of elements in
decreasing order (e.g. 6 5and 3 2).

o Increasing strip: strip of elements in increasing
order (e.g. 7 8)

019437825610

—> —— « > — —» —>

o A single-element strip can be declared either increasing or

decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+1

Reducing the Number of Breakpoints

Theorem 1:

If permutation 7 contains at least one
decreasing strip, then there exists a
reversal p which decreases the number of
breakpoints (i.e. b(z* p) < b(x))

Things To Consider

Formr =14657832
0 1l14l6 5|7 813 2|9 b(n)=5

o Choose decreasing strip with the smallest
element kin 7 (k=2 in this case)

Things To Considet (contd)

Formr =14657832
0 1l4l6 5|7 813 2|9 b(n)=5

o Choose decreasing strip with the smallest
element kin 7 (k=2 in this case)

Things To Considet (contd)

Formr =14657832
0 114l6 5|7 813 2|9 b(n)=5

o Choose decreasing strip with the smallest
element kin 7 (k=2 in this case)

o Find k— 1 In the permutation

Things To Considet (contd)

Formr =14657832
0 114|6 5|7 8[3 2|19 b(n)=5

0 Choose decreasing strip with the smallest
element kin 7 (k= 2 in this case)

o Find k— 1 In the permutation
0 Reverse the segment between k and k-17.

gﬂ 0 1ldm6 5/7 8|3 29 b(n)=5

l
10 12387(56(4|9 b(z)=4

Reducing the Number of Breakpoints
Again

o If there is no decreasing strip, there may be
no reversal p that reduces the number of
breakpoints (i.e. b(z* p) = b(x) for any
reversal p).

0 By reversing an increasing strip (# of
breakpoints stay unchanged), we will create
a decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

Things To Considet (contd)

There are no decreasing strips in 7, for:

7=012|567[34[8 b(n)=3
7 p(6,7)=012|56 7|4 3|8 b(n)=3

0(6,7) does not change the # of breakpoints

0(6,7) creates a decreasing strip thus
guaranteeing that the next step will decrease
the # of breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(z)
1 while H6(z) > 0
2 if 7 has a decreasing strip
Among all possible reversals, choose reversal p

that minimizes b(x * p)
4 else
5 Choose a reversal p that flips an increasing strip in z
6 T & T p
/ output r
8 return

ImprovedBreakpointReversalSort:
Pertormance Guarantee

ImprovedBreakPointReversalSort is an
approximation algorithm with a performance
guarantee of at most 4

o It eliminates at least one breakpoint in every two
steps; at most 2b(x) steps

o Approximation ratio: 2b(xz) / d(x)

o Optimal algorithm eliminates at most 2
breakpoints in every step: d(z) =2 b(x) / 2

o Performance guarantee:

(26(m) | dm))=[26(n) | (K(n) | 2)] = 4

