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GENOME 

REARRANGEMENTS



Turnip vs Cabbage: Look and Taste Different

 Although cabbages and turnips share a recent 

common ancestor, they look and taste different



Turnip vs Cabbage: Almost Identical mtDNA

gene sequences

 In 1980s Jeffrey Palmer studied evolution 
of plant organelles by comparing 
mitochondrial genomes of the cabbage and 
turnip

 99% similarity between genes

 These surprisingly identical gene 
sequences differed in gene order

 This study helped pave the way to 
analyzing genome rearrangements in 
molecular evolution



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Similarity blocks



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:



Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Before

After

Evolution is manifested as the divergence 

in gene order



Transforming Cabbage into Turnip



What are the similarity blocks and how to find 
them?

What is the architecture of the ancestral 
genome?

What is the evolutionary scenario for 
transforming one genome into the other?

Unknown ancestor

~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements



History of Chromosome X

Rat Consortium, Nature, 2004





Reversals

 Blocks represent conserved genes.
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Reversals
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1, 2, 3, -8, -7, -6, -5, -4, 9, 10

 Blocks represent conserved genes.

 In the course of evolution or in a clinical context, blocks 
1,…,10 could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 
10.



Reversals and Breakpoints
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1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).



Reversals: Example

5’ ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break 

and 

Invert



Types of Rearrangements

Reversal

1  2  3  4  5 6 1  2 -5 -4 -3 6

Translocation
1  2  3  

4 5  6

1  2 6  

4 5 3 

1  2  3  4  

5  6
1  2  3  4  5  6

Fusion

Fission



Comparative Genomic Architectures: 

Mouse vs Human Genome

 Humans and mice 

have similar genomes, 

but their genes are 

ordered differently

 ~245 rearrangements

 Reversals

 Fusions

 Fissions

 Translocation



Human chromosome 2



Reversals: Example

p = 1 2 3 4 5 6 7 8                 

r(3,5)

1 2 5 4 3 6 7 8



Reversals: Example

p = 1 2 3 4 5 6 7 8                 

r(3,5)

1 2 5 4 3 6 7 8

r(5,6)

1 2 5 4 6 3 7 8



Reversals and Gene Orders

 Gene order is represented by a 

permutation p: 

p   = p 1 ------ p i-1 p i p i+1 ------ p j-1 p j p j+1 ----- p n

p 1 ------ p i-1 p j p j-1 ------ p i+1 p i p j+1 ----- pn

 Reversal r ( i, j ) reverses (flips) the 

elements from i to j in p

r(i,j)



Reversal Distance Problem

 Goal: Given two permutations, find the shortest 
series of reversals that transforms one into another

 Input: Permutations p and s

 Output: A series of reversals r1,…rt transforming p
into s, such that t is minimum

 t - reversal distance between p and s

 d(p, s) - smallest possible value of t, given p and s



Sorting By Reversals Problem

 Goal: Given a permutation, find a shortest 
series of reversals that transforms it into the 
identity permutation (1 2 … n ) 

 Input: Permutation p

 Output: A series of reversals r1, … rt
transforming p into the identity permutation 
such that t is minimum



Sorting By Reversals: Example

 t =d(p ) - reversal distance of p
 Example :

p =  3  4 2  1  5  6  7  10  9  8

4  3  2  1 5   6  7  10  9  8

4  3  2  1 5  6  7    8  9 10

1  2  3  4  5  6  7    8  9 10

So d(p ) = 3



Sorting by reversals: 5 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: g 1 2 3 4 5 6 7 8



Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: g 1 2 3 4 5 6 7 8



Pancake Flipping Problem

 The chef is sloppy; he 

prepares an unordered stack 

of pancakes of different sizes

 The waiter wants to 

rearrange them (so that the 

smallest winds up on top, 

and so on, down to the 

largest at the bottom)

 He does it by flipping over 

several from the top, 

repeating this as many times 

as necessary

Christos Papadimitrou and 

William H. Gates flip 

pancakes



Pancake Flipping Problem: Formulation

 Goal: Given a stack of n pancakes, what is 

the minimum number of flips to rearrange 

them into perfect stack?

 Input: Permutation p

 Output: A series of prefix reversals r1, … rt

transforming p into the identity permutation 

such that t is minimum



Pancake Flipping Problem: Greedy Algorithm

 Greedy approach: 2 prefix reversals at most 

to place a pancake in its right position, 2n – 2

steps total at most

 William Gates and Christos Papadimitriou 

showed in the mid-1970s that this problem 

can be solved by at most 5/3 (n + 1) prefix 

reversals



Sorting By Reversals: A Greedy Algorithm

 If sorting permutation p = 1 2 3 6 4 5, the first 
three elements are already in order so it does 
not make any sense to break them. 

 The length of the already sorted prefix of p is 
denoted prefix(p)

 prefix(p) = 3

 This results in an idea for a greedy algorithm: 
increase prefix(p) at every step



 Doing so, p can be sorted

1 2 3 6 4 5 

1 2 3 4 6 5

1 2 3 4 5 6

 Number of steps to sort permutation of 
length n is at most (n – 1)

Greedy Algorithm: An Example



Greedy Algorithm: Pseudocode

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3    if j ≠i

4       p  p * r(i, j)

5       output p

6    if p is the identity permutation 

7      return



Analyzing SimpleReversalSort

 SimpleReversalSort does not guarantee the 
smallest number of reversals and takes five 
steps on  p = 6 1 2 3 4 5 :

 Step 1: 1 6 2 3 4 5

 Step 2: 1 2 6 3 4 5 

 Step 3: 1 2 3 6 4 5

 Step 4: 1 2 3 4 6 5

 Step 5: 1 2 3 4 5 6



 But it can be sorted in two steps:

p =  6 1 2 3 4 5

 Step 1:  5 4 3 2 1 6     

 Step 2:  1 2 3 4 5 6

 So, SimpleReversalSort(p) is not optimal

 Optimal poly-time algorithms are unknown for 

NP-hard problems; approximation algorithms 

are used

Analyzing SimpleReversalSort (cont’d)



Approximation Algorithms

 These algorithms find approximate solutions 
rather than optimal solutions

 The approximation ratio of an algorithm A on 
input p is:

A(p) / OPT(p)

where 

A(p) - solution produced by algorithm A                 
OPT(p) - optimal solution of the problem



Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n

 For algorithm A that minimizes objective 

function (minimization algorithm):

 max|p| = n A(p) / OPT(p)



Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n

 For algorithm A that minimizes objective 

function (minimization algorithm):

 max|p| = n A(p) / OPT(p)

 For maximization algorithm:

 min|p| = n A(p) / OPT(p)



p = p1p2p3…pn-1pn

 A pair of elements p i and p i + 1 are adjacent if 

pi+1 = pi + 1

 For example:

p = 1  9  3  4  7  8  2  6  5

 (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints



There is a breakpoint between any adjacent 
element that are non-consecutive:

p = 1  9  3  4  7  8  2  6  5

 Pairs  (1,9), (9,3), (4,7), (8,2) and (2,6) form 
breakpoints of permutation p 

 b(p) - # breakpoints in permutation p

Breakpoints



Adjacency & Breakpoints

•An adjacency - a pair of adjacent elements that are consecutive

•A breakpoint - a pair of adjacent elements that are not 

consecutive

π = 5  6  2  1  3  4

0  5  6  2  1  3  4  7

adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7



 We put two elements p 0 =0 and p n + 1=n+1 at 

the ends of p

Example: 

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

p = 1  9  3  4  7  8  2  6  5

p = 0 1 9  3  4  7  8  2  6  5 10



 Each reversal eliminates at most 2 breakpoints.

p = 2  3  1  4  6  5

0 2  3  1 4  6  5 7 b(p) = 5

0 1  3  2 4  6  5  7 b(p) = 4

0 1  2  3  4  6  5 7 b(p) = 2

0 1  2  3  4  5  6  7 b(p) = 0

Reversal Distance and Breakpoints



 Each reversal eliminates at most 2 breakpoints.

 This implies: 

reversal distance  ≥  #breakpoints / 2

p = 2  3  1  4  6  5

0 2  3  1 4  6  5 7 b(p) = 5

0 1  3  2 4  6  5  7 b(p) = 4

0 1  2  3  4  6  5 7 b(p) = 2

0 1  2  3  4  5  6  7 b(p) = 0

Reversal Distance and Breakpoints



Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,   
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return



Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,   
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return

Problem: this algorithm may work forever



Strips

 Strip: an interval between two consecutive 
breakpoints in a permutation 

 Decreasing strip: strip of elements in 
decreasing order (e.g. 6 5 and 3 2 ).

 Increasing strip: strip of elements in increasing 
order (e.g. 7 8)

0 1  9  4  3  7  8  2  5  6 10

 A single-element strip can be declared either increasing or 
decreasing. We will choose to declare them as decreasing with 
exception of the strips with 0 and n+1



Reducing the Number of Breakpoints

Theorem 1:

If permutation p contains at least one 

decreasing strip, then there exists a 

reversal r which decreases the number of 

breakpoints (i.e. b(p • r) < b(p) )



Things To Consider

 For p = 1 4 6 5 7 8 3 2  

0 1  4  6  5  7  8  3  2  9 b(p) = 5

 Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 



Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2  

0 1  4  6  5  7  8  3  2 9 b(p) = 5

 Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 



Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2  

0 1 4  6  5  7  8  3  2 9 b(p) = 5

 Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 

 Find k – 1 in the permutation



Things To Consider (cont’d)

 For p = 1 4 6 5 7 8 3 2  

0 1 4  6  5  7  8  3  2 9 b(p) = 5

 Choose decreasing strip with the smallest 
element k in p ( k = 2 in this case) 

 Find k – 1 in the permutation

 Reverse the segment between k and k-1:

 0 1 4  6  5  7  8  3  2 9 b(p) = 5

 0 1 2 3  8  7  5  6  4 9 b(p) = 4



Reducing the Number of Breakpoints 

Again

 If there is no decreasing strip, there may be 
no reversal r that reduces the number of 
breakpoints (i.e. b(p • r)  ≥ b(p) for any  
reversal r). 

 By reversing an increasing strip ( # of 
breakpoints stay unchanged ), we will create 
a decreasing strip at the next step. Then the 
number of breakpoints will be reduced in the 
next step (theorem 1).



Things To Consider (cont’d)

 There are no decreasing strips in p, for:

p = 0 1  2  5  6  7  3  4  8    b(p) = 3

p • r(6,7) = 0 1  2  5  6  7  4  3  8 b(p) = 3

 r(6,7) does not change the # of breakpoints

 r(6,7) creates a decreasing strip thus 
guaranteeing that the next step will decrease 
the # of breakpoints.



ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2     if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that   minimizes b(p • r)

4     else
5        Choose a reversal r that flips an increasing strip in p

6   p  p • r

7      output p
8  return



 ImprovedBreakPointReversalSort is an 

approximation algorithm with a performance 

guarantee of at most 4

 It eliminates at least one breakpoint in every two 

steps;  at most 2b(p) steps

 Approximation ratio: 2b(p)  / d(p)

 Optimal algorithm eliminates at most 2 

breakpoints in every step: d(p)  b(p) / 2

 Performance guarantee:

 ( 2b(p) / d(p) )  [ 2b(p) / (b(p) / 2) ] =  4

ImprovedBreakpointReversalSort: 

Performance Guarantee


