CS481: Bioinformatics Algorithms

Can Alkan
EA509
calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/
KMER DATA STRUCTURES
Baseline problem

In-memory representation of a large set of short k-mers:

e.g.

ACTGAT
GTATGC
ATTAAA
GAATTG

...
Applications

- Assembly
- Error-correction of DNA sequencing data
- Detection of similarity between sequences
- Detection of distances between datasets
- Alignment
- Pseudoalignment / quasi-mapping
- Detection of taxonomy
- Indexing large collections of sequencing datasets
- Quality control
- Detection of events (e.g. SNPs, indels, CNVs, alt. transcription)
- ...

Slide by Rayan Chikhi
Sequences of k consecutive letters, e.g. ACAG or TAGG for $k=4$

N.G. de Bruijn (1946), de Bruijn sequences 1

C. Shannon (1948), information theory 2
Framing the problem

Large set of k-mers: $10^6 - 10^{11}$ elements

k in $[11; 10^3]$
Operations to support

- **Construction** (from a disk stream)
- **Membership** (“is X in the set?”)
- **Iteration** (enumerate all elements in the set)
- ...

Extensions:

- Associate value(s) to k-mers (e.g. abundance)
- Navigate the de Bruijn graph

Slide by Rayan Chikhi
Membership test: Tries

Worst case
- O(k) insertion
- O(k) deletion
- O(k) search

Also supports indexing
Membership test: Bloom filters

Init a bit array
Take h hash functions
Insertion: put 1’s at positions given by hash functions

Query: are there 1’s at all positions given by hash functions?

- $O(hk)$ insertion
- $(O(hk)$ deletion
- $O(hk)$ query

<table>
<thead>
<tr>
<th>k-mers</th>
<th>(h=1) hash values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGC</td>
<td>0</td>
</tr>
<tr>
<td>CCG</td>
<td>0</td>
</tr>
<tr>
<td>TCC</td>
<td>5</td>
</tr>
<tr>
<td>ATC</td>
<td>6</td>
</tr>
<tr>
<td>CTG</td>
<td>5</td>
</tr>
</tbody>
</table>

Slide by Rayan Chikhi
Bloom filter

- Bloom filter encodes a set of k-mers
- Uses a bit array B of length m and d hash functions
 - to insert x, we set B[h_i(x)] = 1, for i=1,…,d
 - to query y, we check if B[h_i(y)] all equal 1, for i=1,…,d
- Need an estimate for n, the number of k-mers to insert
Bloom filter example

- **a** and **b** are inserted into a Bloom filter with \(m = 10 \), \(n = 2 \), \(d = 3 \)
- **c** is not in the set, since some bits are 0
- **d** has not been inserted, but is still reported in the set, a false positive
- Bloom filters have no false negatives
Bloom filter

- Storing n k-mers in m bit array with d hash functions has a false positive rate of

$$\approx (1 - e^{-d \frac{n}{m}})^d$$

- Given n and m, the optimal d is $\approx \frac{m}{n} \ln(2)$

- Example
 - $m = 8n$, $d=5$ gives 2.16% fpr
 - $m = 6n$, $d=4$ gives 5.6% fpr
 - $m = 4n$, $d=3$ gives 14.6% fpr

- $m=8n$, corresponds to storing 1 byte per k-mer

Space: $m = 1.44n \log_2(\epsilon)$ where ϵ is the false positive rate
Counting k-mers

- Simple method
 - Store each k-mer in a hash table with a counter

- Memory needed
 - store canonical k-mers
 - 2 bits for each of A,C,G,T
 - k/4 bytes per k-mer (k=31, 8 bytes)
 - 1-2 bytes per counter
 - +10% hash table overhead

- For a genome of size G, expect to see up to G distinct k-mers (2.5-3 billion for Human)
- ~ 36 Gb of memory
Memory-efficient k-mer counting

- Use a Bloom filter and a hash table

Bloom filter

- ATGAAGTGGG
- k-mers: ATGA, TGAA, GAAG, AAGT, AGTG, GTGG, TGGG

Hash table

<table>
<thead>
<tr>
<th></th>
<th>TGGG</th>
<th>GGGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGTG</td>
<td>GGGT</td>
</tr>
<tr>
<td></td>
<td>GTGG</td>
<td>TGGG</td>
</tr>
<tr>
<td></td>
<td>TGGG</td>
<td>TGAA</td>
</tr>
</tbody>
</table>
Algorithm

- This scheme guarantees
 - k-mers seen twice will be in the hash table
 - some unique k-mers will slip through
 - second pass gives accurate counts and allows to discard false positives

- Memory usage
 - full for k-mers in hash table (~ 9 bytes)
 - minimal for k-mers in bloom filter (~ .5-1 bytes)
Results whole genome

- 25-mers in 36 bp reads
- 2.37 billion distinct 25-mers in hg18
- 12.18 billion 25-mers in the sequencing data
 - 9.35 billion unique
 - 2.83 billion with coverage 2 or greater

<table>
<thead>
<tr>
<th>Program</th>
<th>Time (hrs)</th>
<th>Memory (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFCounter</td>
<td>23.82</td>
<td>42</td>
</tr>
<tr>
<td>Naïve</td>
<td>> 26.83</td>
<td>>128</td>
</tr>
</tbody>
</table>
Approximate membership test: Counting Quotient Filter

Hybrid between a compact hash table and a Bloom Filter.

Approximate membership

- \(O(k) \) insertion
- \((O(k)\) deletion\)
- \(O(k) \) query

Fig: P. Pandley, SIGMOD 2017
https://pdfs.semanticscholar.org/6bde/f4a86108309086de4071c9d28d97565a84a4.pdf

Pandley, Bender, Johnson, Patro, SIGMOD 2017

Slide by Rayan Chikhi
Multi-set Membership Test: Sequence Bloom Trees

Leaf: Bloom Filter of a sequencing dataset
Internal nodes: Bit-wise union of children BF’s

- Representation of sets of k-mer sets
- Approximate membership across all datasets in $O(\text{hits})$ instead of $O(\text{datasets})$
- No k-mer iteration
- Insertion/deletion of complete datasets
- Whole structure resides on disk

Application: fast sequence search in 1000’s of RNA-seq experiments

Solomon, Kingsford, *Nat Biotech* 2017
Sun, Harris, Chikhi, Medvedev, *RECOMB* 2017
Solomon, Kingsford, *RECOMB* 2017

Fig: https://www.sevenbridges.com/sequence-bloom-trees-principles/
Multi-set Membership Test: Bloom Filter Tries

Principle: cut k-mers into chunks, insert in a burst trie, Bloom Filters added for speed
- Representation of sets of k-mer sets
- Tailored to pan-genomes: a single k-mer belongs to many sets
- Explicit dBG operations support

Application: indexing and compression of pan-genomes

Holley, Wittler, Stoye, *WABI* 2016

Alternative: colored de Bruijn graphs
De Bruijn Graphs

- \(n \)-dimensional directed graph of \(m \) symbols
 - \(m^n \) vertices: all possible length-\(n \) sequences of \(m \) symbols
 - Edges between vertices \(v \) and \(w \) if \(\text{sequence}(w) \) can be generated by shifting \(\text{sequence}(v) \) by one character and add one new character
 - \(S = \{s_1, s_2, \ldots, s_m\} \)
 - \(V = S^n = \{(s_1, \ldots, s_1, s_1), (s_1, \ldots, s_1, s_2), \ldots, (s_m, \ldots, s_m, s_m)\} \)
 - \(E = \{((v_1, v_2, \ldots, v_n), (w_1, w_2, \ldots, w_n)) : v_2 = w_1, v_3 = w_2, \ldots, v_n = w_{n-1}\} \)
De Bruijn Graph for DNA Assembly

- $m = 4$ (A, C, G, T)
- $n = k$ (k-mer size)
- 4^k potential vertices
 - In reality if k is sufficiently large, upper bound is genome size
 - Twin vertices: vertices with sequences that are reverse-complement of each other
 - AAAAA twin of $TTTT$
De Bruijn Assemblers

- Currently the most common for HTS: Euler, ALLPATHS-LG, Velvet, ABysS, SOAPdenovo

- Divide reads into k-mers
 - Build graph from k-mers
 - Put an edge if there is k-1 bp prefix-suffix match
 - Error correction
 - Eulerian path

- The first parts (graph construction & correction) is essentially common to all these assemblers, with a few implementation differences (e.g. parallelization in ABysS)
A quick example

Slide courtesy of Dan Zerbino
A quick example

AGTCGAG CTTTAGA CGATGAG CTTTAGA
GTCGAGG TTAGATC ATGAGGC GAGACAG
GAGGCTC ATCCGAT AGGCTTT GAGACAG
AGTCGAG TAGATCC ATGAGGC TAGAGAA
TAGTCGA CTTTAGA CCGATGA TTAGAGA
CGAGGCT AGATCCG TGAGGCT AGAGACA
TAGTCGA GCTTTAG TCCGATG GCTCTAG
TCGACGC GATCCGA GAGGCTT AGAGACA
TAGTCGA TTAGATC GATGAGG TTTAGAG
GTCGAGG TCTAGAT ATGAGGC TAGAGAC
AGGCTTT ATCCGAT AGGCTTT GAGACAG
AGTCGAG TTAGATT ATGAGGC AGAGACA
GGCTTTA TCCGATG TTTAGAG
CGAGGCT TAGATCC TGAGGCT GAGACAG
AGTCGAG TTTAGATC ATGAGGC TTAGAGA
GAGGCTT GATCCGA GAGGCTT GAGACAG

Slide courtesy of Dan Zerbino
A quick example

First read: GTCGAGG

Slide courtesy of Dan Zerbino
A quick example

First read: GTCGAGG

Second read: AGTCGAG

insert increment counter

Slide courtesy of Dan Zerbino
A quick example

All the others...

Slide courtesy of Dan Zerbino
Colored de Bruijn Graphs

K = 4

Samples:
- CTTGTGTACGTA
- CTTGTGTACGTC
- TTGTGTACG

Slide by Rob Patro