HIDDEN MARKOV MODELS

Outline

- CG-islands
- The "Fair Bet Casino"
- Hidden Markov Model
- Decoding Algorithm
- Forward-Backward Algorithm
- Profile HMMs
- HMM Parameter Estimation
- Viterbi training
- Baum-Welch algorithm

CG-Islands (=CpG islands)

- Given 4 nucleotides: probability of occurrence is ~ 1/4. Thus, probability of occurrence of a dinucleotide is ~ 1/16.
- However, the frequencies of dinucleotides in DNA sequences vary widely.
- In particular, CG is typically underrepresented (frequency of CG is typically < 1/16)

Why CG-Islands?

- CG is the least frequent dinucleotide because C in CG is easily *methylated and* has the tendency to mutate into T afterwards
- However, the methylation is suppressed around genes in a genome. So, CG appears at relatively high frequency within these CG islands
- So, finding the CG islands in a genome is an important problem

CG Islands and the "Fair Bet Casino"

- The CG islands problem can be modeled after a problem named "The Fair Bet Casino"
- The game is to flip coins, which results in only two possible outcomes: Head or Tail.
- The Fair coin will give Heads and Tails with same probability ¹/₂.
- The Biased coin will give Heads with prob. ³/₄.

The "Fair Bet Casino" (cont'd)

Thus, we define the probabilities:

□
$$P(H|F) = P(T|F) = \frac{1}{2}$$

•
$$P(H|B) = \frac{3}{4}, P(T|B) = \frac{1}{4}$$

The crooked dealer changes between Fair and Biased coins with probability 10%

The Fair Bet Casino Problem

• Input: A sequence $x = x_1 x_2 x_3 \dots x_n$ of coin tosses made by two possible coins (*F* or *B*).

• Output: A sequence $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_n$, with each π_i being either *F* or *B* indicating that x_i is the result of tossing the Fair or Biased coin respectively.

Problem...

Fair Bet Casino Problem

Any observed outcome of coin tosses could have been generated by any sequence of states! Need to incorporate a way to grade different sequences differently.

Decoding Problem

P(x | fair coin) vs. P(x | biased coin)

- Suppose first that dealer never changes coins. Some definitions:
 - P(x|fair coin): prob. of the dealer using the F coin and generating the outcome x.
 - P(x|biased coin): prob. of the dealer using the *B* coin and generating outcome *x*.

P(x | fair coin) vs. P(x | biased coin)

- $P(x|\text{fair coin})=P(x_1...x_n|\text{fair coin})$ $\Pi_{i=1,n} p(x_i|\text{fair coin})=(1/2)^n$
- $P(x|biased coin) = P(x_1...x_n|biased coin) =$

 $\Pi_{i=1,n} p(x_i | biased coin) = (3/4)^k (1/4)^{n-k} = 3^k/4^n$

• *k* - the number of *H*eads in *x*.

P(x | fair coin) vs. P(x | biased coin)

P(x|fair coin) = P(x|biased coin)

•
$$1/2^n = 3^k/4^n$$

•
$$2^n = 3^k$$

•
$$n = k \log_2 3$$

• when $k = n / \log_2 3 (k \sim 0.67n)$

Log-odds Ratio

We define *log-odds ratio* as follows:

$log_{2}(P(x|fair coin) / P(x|biased coin))$ = $\Sigma_{i=1}^{k} log_{2}(p^{+}(x_{i}) / p^{-}(x_{i}))$ = $n - k log_{2}3$

Computing Log-odds Ratio in Sliding Windows



Consider a *sliding window* of the outcome sequence. Find the log-odds for this short window.

 Biased coin most likely used
 Fair coin most likely used
 Log-odds value

Disadvantages:

- the length of CG-island is not known in advance
- different windows may classify the same position differently

Hidden Markov Model (HMM)

- Can be viewed as an abstract machine with k hidden states that emits symbols from an alphabet Σ.
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
 - What state should I move to next?
 - What symbol from the alphabet Σ should I emit?

Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in.
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

HMM Parameters

 Σ : set of emission characters.

Ex.: $\Sigma = \{H, T\}$ for coin tossing $\Sigma = \{1, 2, 3, 4, 5, 6\}$ for dice tossing

Q: set of hidden states, each emitting symbols from Σ.

Q={F,B} for coin tossing

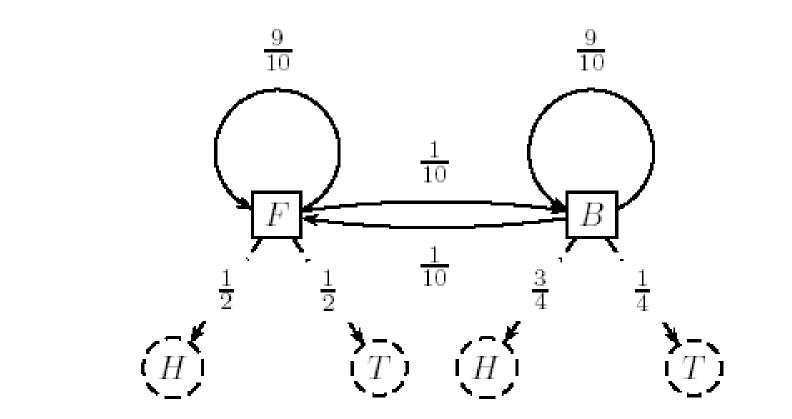
 $A = (a_{kl})$: a $|Q| \times |Q|$ matrix of probability of changing from state k to state l. $a_{FF} = 0.9$ $a_{FB} = 0.1$ $a_{BF} = 0.1$ $a_{BB} = 0.9$ $E = (e_k(b))$: a $|Q| \times |\Sigma|$ matrix of probability of emitting symbol b while being in state k. $e_{F}(0) = \frac{1}{2}$ $e_{F}(1) = \frac{1}{2}$ $e_{B}(0) = \frac{1}{4}$ $e_{B}(1) = \frac{3}{4}$

HMM for Fair Bet Casino

- The Fair Bet Casino in HMM terms:
 - $\Sigma = \{0, 1\} (0 \text{ for } Tails \text{ and } 1 Heads)$
 - $Q = \{F,B\} F$ for Fair & B for Biased coin.
- Transition Probabilities A *** Emission Probabilities E

	Fair	Biased		Tails(0)	Heads(1)
Fair	a _{FF} = 0.9	a _{FB} = 0.1	Fair	$e_F(0) = \frac{1}{2}$	$e_F(1) = \frac{1}{2}$
Biased	a _{<i>BF</i>} = 0.1	a _{BB} = 0.9	Biased	e _B (0) = ¼	e _B (1) = ¾
				/4	/4

HMM for Fair Bet Casino (cont'd)



HMM model for the Fair Bet Casino Problem

Hidden Paths

- A path $\pi = \pi_1 \dots \pi_n$ in the HMM is defined as a sequence of states.
- Consider path π = FFFBBBBBFFF and sequence x = 01011101001

, Probability that x_i was emitted from state n_i

$P(x \mid \pi)$ Calculation

• $P(x|\pi)$: Probability that sequence x was generated by the path π :

$$\mathsf{P}(\boldsymbol{x}|\boldsymbol{\pi}) = \mathsf{P}(\boldsymbol{\pi}_{0} \rightarrow \boldsymbol{\pi}_{1}) \cdot \prod_{i=1}^{n} \mathsf{P}(\boldsymbol{x}_{i}|\boldsymbol{\pi}_{i}) \cdot \mathsf{P}(\boldsymbol{\pi}_{i} \rightarrow \boldsymbol{\pi}_{i+1})$$

$$= a_{\pi_{0,\pi_{1}}} \cdot \Pi e_{\pi_{i}} (x_{i}) \cdot a_{\pi_{i,\pi_{i+1}}}$$

$P(x | \pi)$ Calculation

• $P(x|\pi)$: Probability that sequence x was generated by the path π :

$$\mathsf{P}(\boldsymbol{x}|\boldsymbol{\pi}) = \mathsf{P}(\boldsymbol{\pi}_{0} \rightarrow \boldsymbol{\pi}_{1}) \stackrel{n}{\cdot} \prod_{i=1}^{n} \mathsf{P}(\boldsymbol{x}_{i}|\boldsymbol{\pi}_{i}) \cdot \mathsf{P}(\boldsymbol{\pi}_{i} \rightarrow \boldsymbol{\pi}_{i+1})$$

$$= a_{\pi_{0}, \pi_{1}} \cdot \prod e_{\pi_{i}} (x_{i}) \cdot a_{\pi_{i}, \pi_{i+1}}$$

=
$$\prod e_{\pi_{i+1}} (x_{i+1}) \cdot a_{\pi_{i}, \pi_{i+1}}$$

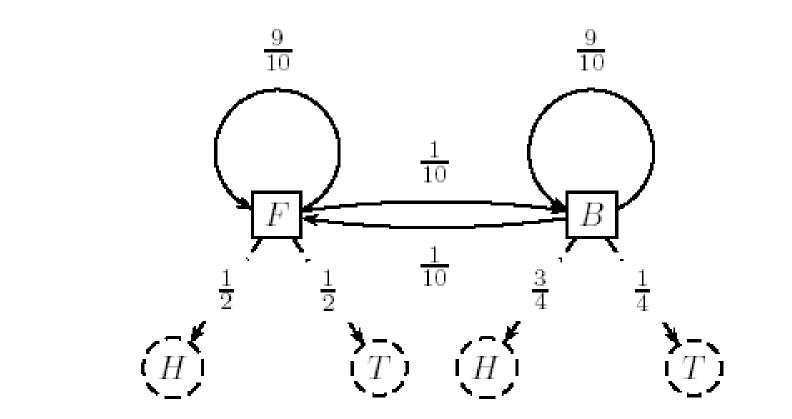
if we count from *i=0* instead of *i=1*

Decoding Problem

 Goal: Find an optimal hidden path of states given observations.

- Input: Sequence of observations $x = x_1 \dots x_n$ generated by an HMM *M*(Σ, *Q*, *A*, *E*)
- Output: A path that maximizes $P(x|\pi)$ over all possible paths π .

HMM for Fair Bet Casino (cont'd)



HMM model for the Fair Bet Casino Problem

Hidden Paths

- A path $\pi = \pi_1 \dots \pi_n$ in the HMM is defined as a sequence of states.
- Consider path π = FFFBBBBBFFF and sequence x = 01011101001

, Probability that x_i was emitted from state n_i

$P(x \mid \pi)$ Calculation

• $P(x|\pi)$: Probability that sequence x was generated by the path π :

$$\mathsf{P}(\boldsymbol{x}|\boldsymbol{\pi}) = \mathsf{P}(\boldsymbol{\pi}_{0} \rightarrow \boldsymbol{\pi}_{1}) \cdot \prod_{i=1}^{n} \mathsf{P}(\boldsymbol{x}_{i}|\boldsymbol{\pi}_{i}) \cdot \mathsf{P}(\boldsymbol{\pi}_{i} \rightarrow \boldsymbol{\pi}_{i+1})$$

$$= a_{\pi_{0,\pi_{1}}} \cdot \Pi e_{\pi_{i}} (x_{i}) \cdot a_{\pi_{i,\pi_{i+1}}}$$

Decoding Problem

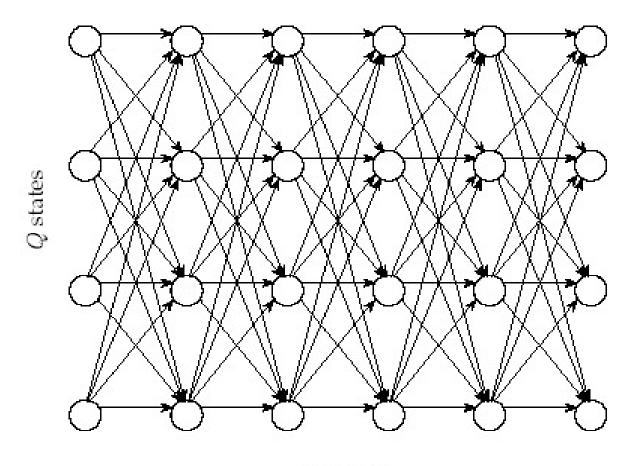
 Goal: Find an optimal hidden path of states given observations.

- Input: Sequence of observations $x = x_1 \dots x_n$ generated by an HMM *M*(Σ, *Q*, *A*, *E*)
- Output: A path that maximizes $P(x|\pi)$ over all possible paths π .

Building Manhattan for Decoding Problem

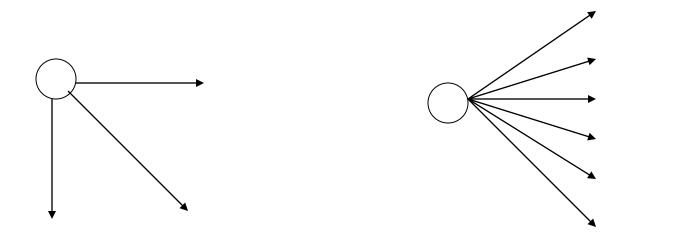
- Andrew Viterbi used the Manhattan grid model to solve the *Decoding Problem*.
- Every choice of $\pi = \pi_1 \dots \pi_n$ corresponds to a path in the graph.
- The only valid direction in the graph is eastward.
- This graph has $|Q|^2(n-1)$ edges.

Edit Graph for Decoding Problem



n layers

Decoding Problem vs. Alignment Problem



Valid directions in the alignment problem.

Valid directions in the *decoding problem.*

Decoding Problem as Finding a Longest Path in a DAG

• The *Decoding Problem* is reduced to finding a longest path in the *directed acyclic graph* (*DAG*) above.

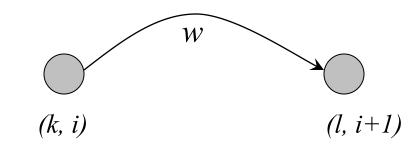
 Notes: the length of the path is defined as the product of its edges' weights, not the sum.

Decoding Problem (cont'd)

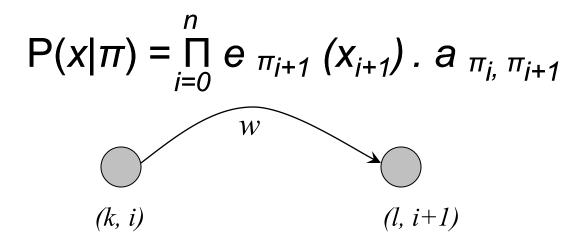
• Every path in the graph has the probability $P(x|\pi)$.

• The Viterbi algorithm finds the path that maximizes $P(x|\pi)$ among all possible paths.

The Viterbi algorithm runs in O(n|Q|²) time.

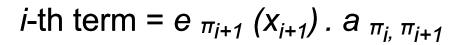


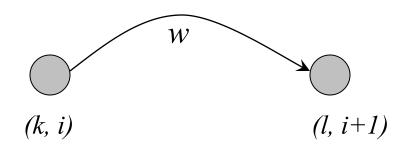
The weight **w** is given by: *???*



The weight **w** is given by:

??

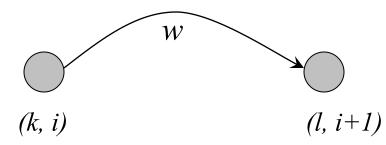




The weight **w** is given by:

2

i-th term = $e_{\pi_i}(x_i)$. $a_{\pi_{i,\pi_{i+1}}} = e_i(x_{i+1})$. a_{kl} for $\pi_i = k, \pi_{i+1} = l$



The weight $w=e_{l}(x_{i+1})$. a_{kl}

Decoding Problem and Dynamic Programming

 $S_{l,i+1} = \max_{k \in Q} \{s_{k,i} \cdot \text{ weight of edge between } (k,i) \text{ and } (l,i+1)\} = \max_{k \in Q} \{s_{k,i} \cdot a_{kl} \cdot e_l(x_{i+1}) \} = e_l(x_{i+1}) \cdot \max_{k \in Q} \{s_{k,i} \cdot a_{kl}\}$

Decoding Problem (cont'd)

- Initialization:
 - $s_{begin,0} = 1$

•
$$s_{k,0} = 0$$
 for $k \neq begin$.

• Let π^* be the optimal path. Then,

$$\mathsf{P}(x|\pi^*) = \max_{k \in Q} \{s_{k,n} : a_{k,end}\}$$

Decoding Problem (cont'd)

- Initialization:
 - $s_{begin,0} = 1$

•
$$s_{k,0} = 0$$
 for $k \neq begin$.

• Let π^* be the optimal path. Then,

$$\mathsf{P}(x|\pi^*) = \max_{k \in Q} \{s_{k,n} : a_{k,end}\}$$

Is there a problem here?

Viterbi Algorithm

The value of the product can become extremely small, which leads to overflowing.

Viterbi Algorithm

The value of the product can become extremely small, which leads to overflowing.
To avoid overflowing, use log value instead.

$$s_{k,i+1} = \log e_l(x_{i+1}) + \max_{k \in Q} \{s_{k,i} + \log(a_{kl})\}$$