Illumina (Solexa)

- Current market leader
- Based on sequencing by synthesis
- Current read length 100-150bp
- Paired-end easy, longer matepairs harder
- Error ~0.1%
 - Mismatch errors dominate
- Throughput: 4 Tbp in one run (5 days)
- Cheapest sequencing technology
 - Cost: ~$1000 per human genome
Illumina (Solexa)

Incorporate all four nucleotides, each label with a different dye.

Wash, four-colour imaging.

Cleave dye and terminating groups, wash.

Repeat cycles.

Top: CATCGT
Bottom: CCCCCC

HiSeq 2000

GA IIx

MiSeq
Illumina (Solexa)

- Read length and quality string length are the same

Read and Quality (1)

@FC81ET1ABXX:3:1101:1215:2154/1
TTTTCTCCTATTTTTATATCTTTTTTGGAGAATTGTCTGTCATGCNTNNNGNCCNNTNCTANGGATTTTTGT
+HHGHHHHGGHHHHHDHFFHHHHHHHEHHHEHHEHHHEGGDEFG2GDCDF0>DA##################################

Read and Quality (2)

@FC81ET1ABXX:3:1101:1215:2154/2
AAGCCANNTNNNNNNNNACTGATCCTATAGCTACCTTATGCAAAAATCAAATCAACTCAAGATGGATGAAGGTTTTA
+HHHBH?##;#FDFBEFE;BEEBE8C>2D8@BBACDFG=E@=CDDHEGDB;<:19*23?=@@@@@@@@

- Read length and quality string length are the same
- All read/1s are the same length in the same run
- All read/2s are the same length in the same run
Illumina (Solexa)

- Read mapping:
 - mrFAST, mrsFAST, BWA, MAQ, BFAST, MOSAIK, Bowtie, SOAP, SHRiMP, many more

- De novo assembly:
 - EULER, Velvet, ABySS, Hapsembler, SGA, ALLPATHS, ….
Ion Torrent

- No laser, no image processing:
 - Sequencing is done on a microprocessor that measures pH level changes as bases incorporate
- Error ~1%
 - Indel dominated & homopolymers (454 Life Sci.)
- Matepair sequencing possible, but difficult
Ion Torrent
Ion Torrent

Nucleotide incorporates into DNA

Hydrogen ion is released

H⁺
Ion Torrent

Nucleotide is not a match

No hydrogen ion released
Ion Torrent
Pacific Biosciences

- “Third generation”; single molecule real time sequencing (SMRT)
- No replication with PCR
- Phosphates are labeled. Watches DNA polymerase in real-time while it copies single DNA molecules.
- Long sequence reads (7-20 Kb)
- Errors: ~12%; indel dominated
Nanopore Sequencing

Nanopore sequencing:
- Oxford Biosciences
 - 100 Kb reads
 - 20% error rate

MinION
SmidgION
PromethION
NGS: Computational Challenges

- Data management
 - Files are very large; compression algorithms needed

- Read mapping
 - Finding the location on the reference genome
 - All platforms have different data types and error models
 - Repeats!!!!

- Variation discovery
 - Depends on mapping
 - Again, all platforms have strengths and weaknesses

- De novo assembly
 - It’s very difficult to assemble short sequences with high errors
Compression

1 – Reference based

- Coding/decoding rather than real compression
- Very high compression rate
- Fast to encode
- Slow to decode
- Needs a reference genome
 - None, or poor quality for most species
 - Use same version of reference genome in decompression
- Needs mapping (takes a long time)
 - Unmapped reads should be treated separately
- CRAMtools, SlimGene, etc.
 - *Very lossy*
Compression

2 – Reference free

- Less compression rate
- No need for reference, applicable to any dataset from any species
- Slower to compress, faster to decompress
- Can be lossy or lossless
- Multipurpose compressors:
 - gzip, bzip2, 7-zip, etc.
- Specialized FASTQ compressors
 - SCALCE, ReCoil, G-SQZ, etc.
Reference-free compression

- Easy task (or gzip, etc.): Concatenate all sequences, then run Lempel-Ziv algorithm
- Problem: Locality

http://scalce.sourceforge.net Hach et al., unpublished
Lempel-Ziv Compression

```plaintext
0 1 1 0 2--- 4--- 2--- 6------ 5--- 5--- 7------ 3--- 0
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Entry</th>
<th>Index</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>7</td>
<td>baa</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>8</td>
<td>aba</td>
</tr>
<tr>
<td>2</td>
<td>ab</td>
<td>9</td>
<td>abba</td>
</tr>
<tr>
<td>3</td>
<td>bb</td>
<td>10</td>
<td>aaa</td>
</tr>
<tr>
<td>4</td>
<td>ba</td>
<td>11</td>
<td>aab</td>
</tr>
<tr>
<td>5</td>
<td>aa</td>
<td>12</td>
<td>baab</td>
</tr>
<tr>
<td>6</td>
<td>abb</td>
<td>13</td>
<td>bba</td>
</tr>
</tbody>
</table>
READ MAPPING
Read Mapping

When we have a reference genome & reads from DNA sequencing, which part of the genome does it come from?

Challenges:

- Sanger sequencing
 - Cloning vectors
 - Millions of long (~1000 bp reads)
- Next-Gen sequencing:
 - Billions of short reads with low error
 - OR: hundreds of millions of long reads with high error
- Common: sequencing errors
 - More prevalent in NGS
- Common: contamination
 - Typically ~2-3% of reads come from different sources; i.e. human resequencing contaminated with yeast, E. coli, etc.
- Common: Repeats & Duplications
Read Mapping

- **Accuracy**
 - Due to repeats, we need a confidence score in alignment

- **Sensitivity**
 - Don’t lose information

- **Speed**

- **Output**
 - Keep all needed information, but don’t overflow your disks

- **All read mapping algorithms perform alignment at some point (read vs. reference)**
Sanger vs NGS: cloning vectors

- Sanger reads may contain sequence from the cloning vector; thus mapping needs *local alignment*.
- No cloning vectors in NGS, *global alignment* is fine.
Mapping Reads

Problem: We are given a read, R, and a reference sequence, S. Find the best or all occurrences of R in S.

Example:

$R = \text{AAACGAGTTA}$
$S = \text{TTAATGC} \text{AAACGAGTTA} \text{CCCAATATATATATAAACCAGTTATT}$

Considering no error: one occurrence.
Considering up to 1 substitution error: two occurrences.
Considering up to 10 substitution errors: many meaningless occurrences!

Don’t forget to search in both forward and reverse strands!!!
Mapping Reads (continued)

Variations:

- Sequencing error
 - No error: R is a perfect subsequence of S.
 - Only substitution error: R is a subsequence of S up to a few substitutions.
 - Indel and substitution error: R is a subsequence of S up to a few short indels and substitutions.

- Junctions (for instance in alternative splicing)
 - Fixed order/orientation
 $R = R_1R_2 \ldots R_n$ and R_i map to different non-overlapping loci in S, but to the same strand and preserving the order.
 - Arbitrary order/orientation
 $R = R_1R_2 \ldots R_n$ and R_i map to different non-overlapping loci in S.
Mapping algorithms

- Two main “styles”:
 - Hash based seed-and-extend (hash table, suffix array, suffix tree)
 - Index the k-mers in the genome
 - Continuous seeds and gapped seeds
 - When searching a read, find the location of a k-mer in the read; then extend through alignment
 - Requires large memory; this can be reduced with cost to run time
 - More sensitive, but slow
 - Burrows-Wheeler Transform & Ferragina-Manzini Index based aligners
 - BWT is a data compression method used to compress the genome index
 - Perfect hits can be found very quickly, memory lookup costs increase for imperfect hits
 - Reduced sensitivity

- Today’s standard: hybrid
 - Seed with BWT-FM then extend
“Long” read mappers

- BLAST, MegaBLAST, BLAT, LASTZ can be used for Sanger, 454, Ion Torrent
 - Hash based
 - Extension step is done using Smith-Waterman algorithm
 - BLAST and MegaBLAST have additional scoring scheme to order hits and assign confidence values
 - 454/Ion Torrent only: PASH, Newbler
Short read mappers

- **Hash based**
 - Illumina: mrFAST, mrsFAST, MAQ, MOSAIK, SOAP, SHRiMP, etc.
 - MOSAIK requires ~30GB memory
 - Others limit memory usage by dividing genome into chunks
 - mrFAST, SHRiMP have SSE-based implementation
 - MAQ: Hamming distance only
Short read mappers

- BWT-FM based
 - Illumina: BWA, Bowtie, SOAP2
 - Human genome can be compressed into a 2.3 GB data structure through BWT
 - Extremely fast for perfect hits
 - Increased memory lookups for mismatch
 - Indels are found in postprocessing when paired-end reads are available
 - GPGPU implementations: SOAP3 (poor performance due to memory lookups)
- Hybrid: BWA-MEM
Read mappers: PacBio

- BLASR aligner; tuned for PacBio error model (indel dominated, ~15%)

- Two versions:
 - Hash based
 - BWT-FM based
Hash Based Aligners

GENOME

Break into contigs of length < ~30 Mbp

Contig 1 → coord 1 → coord 2 → coord 3
Contig 2 → coord 1 → coord 2
Contig n

Create collision-free hash tables for all contigs, indexing all possible k-mers

index 1

(a)

reference
k-mer seed
align/extend
read
reference
align/extend
k-mer seed
align/extend
read

(b)

∞

(c)
Seed and extend

- Break the read into \(n \) segments of \(k \)-mers.
 - For perfect sensitivity under edit distance \(e \)
 - There is at least one \(l \)-mer where \(l = \text{floor}(L/(e+1)) \); \(L \)=read length
 - For fixed \(l=k \); \(n = e+1 \) and \(k \leq L / n \)
 - Large \(k \) -> large memory
 - Small \(k \) -> more hash hits

- Lets consider the read length is 36 bp, and \(k=12 \).

- if we are looking for 2 edit distance (mismatch, indel) this would guaranty to find all of the hits
Mapping Quality

- MAPQ = \(-10 \times \log_{10}(\text{Prob}(\text{mapping is wrong}))\)

For reference sequence \(x\); read sequence \(z\):
\[
p(z \mid x, u) = \text{probability that } z \text{ comes from position } u
\]
\[
= \text{multiplication of } p_e \text{ of mismatched bases of } z
\]

For posterior probability \(p(u \mid x, z)\) assume uniform prior distribution \(p(u \mid x)\)
\(L=\lvert x \rvert\) and \(l=\lvert z \rvert\). Apply Bayesian formula:
\[
p_s(u \mid x, z) = \frac{p(z \mid x, u)}{\sum_{v=1}^{L-l+1} p(z \mid x, v)}
\]
\[
Q_s(u \mid x, z) = -10 \log_{10}[1 - p_s(u \mid x, z)].
\]

Calculated for one “best” hit

Li et al., Genome Research, 2008
Spliced-read mapping

- Used for processed mRNA data
- Reports reads that span introns.
- Examples: TopHat, ERANGE