Illumina (Solexa)

- Current market leader
- Based on sequencing by synthesis
- Current read length 100-150bp
- Paired-end easy, longer matepairs harder
- Error ~0.1%
 - Mismatch errors dominate
- Throughput: 4 Tbp in one run (5 days)
- Cheapest sequencing technology
 - Cost: ~\$1000 per human genme

•Read length and quality string length are the same

Read and Quality (1)

@FC81ET1ABXX:3:1101:1215:2154/1

Read and Quality (2)

@FC81ET1ABXX:3:1101:1215:2154/2

- Read length and quality string length are the same
- All read/1s are the same length in the same run
- All read/2s are the same length in the same run

Illumina (Solexa)

Read mapping:

- mrFAST, mrsFAST, BWA, MAQ, BFAST, MOSAIK, Bowtie, SOAP, SHRiMP, many more
- De novo assembly:
 - EULER, Velvet, ABySS, Hapsembler, SGA, ALLPATHS,

- No laser, no image processing:
 - Sequencing is done on a microprocessor that measures pH level changes as bases incorporate
- Error ~1%
 - Indel dominated & homopolymers (454 Life Sci.)
- Matepair sequencing possible, but difficult

Pacific Biosciences

- "Third generation"; single molecule real time sequencing (SMRT)
- No replication with PCR
- Phosphates are labeled. Watches DNA polymerase in real-time while it copies single DNA molecules.
- Long sequence reads (7-20 Kb)
- Errors: ~12%; indel dominated

Nanopore Sequencing

- Nanopore sequencing:
 - Oxford Biosciences
 - 100 Kb reads
 - 20% error rate

MinION

SmidgION

PromethION

NGS: Computational Challenges

Data management

□ Files are very large; compression algorithms needed

Read mapping

- □ Finding the location on the reference genome
- All platforms have different data types and error models
- Repeats!!!!
- Variation discovery
 - Depends on mapping
 - Again, all platforms has strengths and weaknesses
- *De novo* assembly
 - It's very difficult to assemble short sequences with high errors

Compression

- 1 Reference based
 - Coding/decoding rather than real compression
 - Very high compression rate
 - Fast to encode
 - Slow to decode
 - Needs a reference genome
 - None, or poor quality for most species
 - Use same version of reference genome in decompression
 - Needs mapping (takes a long time)
 - Unmapped reads should be treated separately
 - CRAMtools, SlimGene, etc.
 - Very lossy

Compression

- 2 Reference free
 - Less compression rate
 - No need for reference, applicable to any dataset from any species
 - Slower to compress, faster to decompress
 - Can be lossy or lossless
 - Multipurpose compressors:
 - gzip, bzip2, 7-zip, etc.
 - Specialized FASTQ compressors
 - SCALCE, ReCoil, G-SQZ, etc.

Reference-free compression

Easy task (or gzip, etc.): Concatenate all sequences, then run Lempel-Ziv algorithm
Problem: Locality

Lempel-Ziv Compression

a b b a a b b a a b a b b a a a a b a a b b a 0 1 1 0 2--- 4--- 2--- 5--- 5--- 5--- 7----- 3--- 0

Index	Entry	Index	Entry
0	а	7	baa
1	b	8	aba
2	ab	9	abba
3	bb	10	aaa
4	ba	11	aab
5	aa	12	baab
6	abb	13	bba

NGS/algorithms

READ MAPPING

Read Mapping

- When we have a reference genome & reads from DNA sequencing, which part of the genome does it come from?
- Challenges:
 - Sanger sequencing
 - Cloning vectors
 - Millions of long (~1000 bp reads)
 - Next-Gen sequencing:
 - Billions of short reads with low error
 - OR: hundreds of millions of long reads with high error
 - Common: sequencing errors
 - More prevalent in NGS
 - Common: contamination
 - Typically ~2-3% of reads come from different sources; i.e. human resequencing contaminated with yeast, E. coli, etc.
 - Common: Repeats & Duplications

Read Mapping

- Accuracy
 - Due to repeats, we need a confidence score in alignment
- Sensitivity
 - Don't lose information
- Speed
- Think of the memory usage
- Output
 - Keep all needed information, but don't overflow your disks
- All read mapping algorithms perform alignment at some point (read vs. reference)

Sanger vs NGS: cloning vectors

- Sanger reads may contain sequence from the cloning vector; thus mapping needs *local alignment.*
- No cloning vectors in NGS, global alignment is fine.

Mapping Reads

Problem: We are given a read, *R*, and a reference sequence, *S*. Find the best or all occurrences of *R* in *S*.

Example:

R = AAACGAGTTA

S = TTAATGC*AAACGAGTTA*CCCAATATATATATA*AACCAGTTA*TT

Considering no error: one occurrence.

Considering up to 1 substitution error: two occurrences.

Considering up to 10 substitution errors: many meaningless occurrences!

Don't forget to search in both forward and reverse strands!!!

Mapping Reads (continued)

Variations:

- Sequencing error
 - □ No error: *R* is a perfect subsequence of *S*.
 - Only substitution error: R is a subsequence of S up to a few substitutions.
 - Indel and substitution error: R is a subsequence of S up to a few short indels and substitutions.
- Junctions (for instance in alternative splicing)
 - Fixed order/orientation

 $R = R_1 R_2 \dots R_n$ and R_i map to different non-overlapping loci in S, but to the same strand and preserving the order.

Arbitrary order/orientation

 $R = R_1 R_2 \dots R_n$ and R_i map to different non-overlapping loci in S.

Mapping algorithms

- Two main "styles":
 - Hash based seed-and-extend (hash table, suffix array, suffix tree)
 - Index the k-mers in the genome
 - Continuous seeds and gapped seeds
 - When searching a read, find the location of a k-mer in the read; then extend through alignment
 - Requires large memory; this can be reduced with cost to run time
 - More sensitive, but slow
 - Burrows-Wheeler Transform & Ferragina-Manzini Index based aligners
 - BWT is a data compression method used to compress the genome index
 - Perfect hits can be found very quickly, memory lookup costs increase for imperfect hits
 - Reduced sensitivity
 - Today's standard: hybrid
 - Seed with BWT-FM then extend

"Long" read mappers

- BLAST, MegaBLAST, BLAT, LASTZ can be used for Sanger, 454, Ion Torrent
 - Hash based
 - Extension step is done using Smith-Waterman algorithm
 - BLAST and MegaBLAST have additional scoring scheme to order hits and assign confidence values
 - □ 454/Ion Torrent only: PASH, Newbler

Short read mappers

Hash based

- Illumina: mrFAST, mrsFAST, MAQ, MOSAIK, SOAP, SHRiMP, etc.
 - MOSAIK requires ~30GB memory
 - Others limit memory usage by dividing genome into chunks
 - mrFAST, SHRiMP have SSE-based implementation
 - MAQ: Hamming distance only

Short read mappers

BWT-FM based

- Illumina: BWA, Bowtie, SOAP2
- Human genome can be compressed into a 2.3 GB data structure through BWT
- Extremely fast for perfect hits
- Increased memory lookups for mismatch
 - Indels are found in postprocessing when paired-end reads are available
- GPGPU implementations: SOAP3 (poor performance due to memory lookups)
- Hybrid: BWA-MEM

Read mappers: PacBio

- BLASR aligner; tuned for PacBio error model (indel dominated, ~15%)
- Two versions:
 - Hash based
 - BWT-FM based

Hash Based Aligners

Seed and extend

Break the read into *n* segments of k-mers.

- For perfect sensitivity under edit distance e
 - There is at least one *l*-mer where I = floor(*L*/(e+1)); *L*=read length
 - For fixed l=k; n = e+1 and $k \le L / n$
- Large k -> large memory
- Small k -> more hash hits
- Lets consider the read length is 36 bp, and k=12.

 if we are looking for 2 edit distance (mismatch, indel) this would guaranty to find all of the hits

Mapping Quality

MAPQ = -10 * log₁₀(Prob(mapping is wrong))

For reference sequence *x;* read sequence *z:* **p**(*z* | *x,u*) = probability that *z* comes from position *u* = multiplication of p_e of mismatched bases of *z*

For posterior probability p(u | x,z) assume uniform prior distribution p(u|x)L=|x| and l=|z|. Apply Bayesian formula:

$$p_s(u|x,z) = \frac{p(z|x,u)}{\sum_{\nu=1}^{L-l+1} p(z|x,\nu)}$$

$$Q_s(u|x,z) = -10 \log_{10}[1 - p_s(u|x,z)].$$

Calculated for one "best" hit

Li et al., Genome Research, 2008

Examples: TopHat, ERANGE