CS481: Bioinformatics
Algorithms

Can Alkan
EA224
calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/
The TA will hold a few recitation sessions for the students from non-CS departments

- Quick version of CS201 and CS202
- Details of big-oh notation
- Basic data structures
- Email your schedules to ekayaaslan@gmail.com
Computational complexity (basic)

- When we develop or use an algorithm, we would like to know how its run time and memory requirements will scale with respect to data size

- Big-O Notation, and its counterparts: Limiting behavior of a function
 - $O(f(x))$: Upper bound
 - $\Omega(f(x))$: Lower bound
 - $\Theta(f(x))$: Tight bound
Bounds

- $f(x)$ is $O(g(x))$ if there are positive real constants c and x_0 such that $f(x) \leq cg(x)$ for all values of $x \geq x_0$.
- $f(x)$ is $\Omega(g(x))$ if there are positive real constants c and x_0 such that $f(x) \geq cg(x)$ for all values of $x \geq x_0$.
- $f(x)$ is $\Theta(g(x))$ if $f(x) = O(g(x))$ and $f(x) = \Omega(g(x))$
Bounds

\[f(n) = O(g(n)) \]
\[f(n) = \Omega(g(n)) \]
\[f(n) = \Theta(g(n)) \]

\[n^2 = O(n^2) \]
\[n^2 + n = O(n^2) \]
\[n^2 + 1000n = O(n^2) \]
\[5000n^2 + 1000n = O(n^2) \]

Constants do not matter!

http://meherchilakalapudi.wordpress.com/2012/09/14/data-structures-1asymptotic-analysis/
Fast vs. slow algorithms

- n^n
- $n!$
- 2^n
- n^2
- $n \log n$
- n
- $\log n$
- 1
Polynomial vs. exponential

- **Polynomial algorithms**: run time is bounded by a polynomial function (addition, subtraction, multiplication, division, non-negative integer exponents)
 - \(n, n^2, n^{5000}, \text{etc.} \)

- **Exponential algorithms**: run time is bounded by an exponential function, where exponent is \(n \)
 - \(n^n, 2^n, \text{etc.} \)
Fast vs. Slow: Fibonacci

- Fibonacci series:
 - $F_n = F_{n-1} + F_{n-2}$
 - $F_1 = F_2 = 1$
 - $1, 1, 2, 3, 5, 8, 13, 21, 34, ...$
Two Fibonacci algorithms

RECURSIVEFIBONACCI(n)

1. if \(n = 1 \) or \(n = 2 \) \(\Rightarrow \) \(O(2^n) \)
2. return 1
3. else
4. \(a \leftarrow \text{RECURSIVEFIBONACCI}(n - 1) \)
5. \(b \leftarrow \text{RECURSIVEFIBONACCI}(n - 2) \)
6. return \(a + b \)

FIBONACCI(n)

1. \(F_1 \leftarrow 1 \)
2. \(F_2 \leftarrow 1 \)
3. for \(i \leftarrow 3 \) to \(n \)
4. \(F_i \leftarrow F_{i-1} + F_{i-2} \)
5. return \(F_n \)
Recursion or no recursion?

Why is it not a good idea to write recursive algorithms when you can write non-recursive versions?
Recursion tree for Fibonacci
Sample problem: Change

- Input: An amount of money M, in cents
- Output: Smallest number of coins that adds up to M
 - Quarters (25c): q
 - Dimes (10c): d
 - Nickels (5c): n
 - Pennies (1c): p
 - Or, in general, c_1, c_2, \ldots, c_d (d possible denominations)
Algorithm design techniques

- Exhaustive search / brute force
 - Examine every possible alternative to find a solution

```plaintext
BRUTE_FORCE_CHANGE(M, c, d)
1  smallestNumberOfCoins ← ∞
2  for each (i₁, ..., iₙ) from (0, ..., 0) to (M/c₁, ..., M/cₙ)
3      valueOfCoins ← ∑ₖ=1^d iₖcₖ
4      if valueOfCoins = M
5          numberOfCoins ← ∑ₖ=1^d iₖ
6          if numberOfCoins < smallestNumberOfCoins
7              smallestNumberOfCoins ← numberOfCoins
8          bestChange ← (i₁, i₂, ..., iₙ)
9  return (bestChange)
```
Algorithm design techniques

- **Branch and bound:**
 - Omit a large number of alternatives when performing brute force
Algorithm design techniques

- **Greedy algorithms:**
 - Choose the “most attractive” alternative at each iteration

```plaintext
BETTERCHANGE(M, c, d)
1  r ← M
2  for k ← 1 to d
3     i_k ← r/c_k
4     r ← r - c_k · i_k
5  return (i_1, i_2, ..., i_d)

USCHANGE(M)
1  r ← M
2  q ← r/25
3  r ← r - 25 · q
4  d ← r/10
5  r ← r - 10 · d
6  n ← r/5
7  r ← r - 5 · n
8  p ← r
9  return (q, d, n, p)
```
Algorithm design techniques

- **Dynamic Programming:**
 - Break problems into subproblems; solve subproblems; merge solutions of subproblems to solve the real problem
 - Keep track of computations to avoid recomputing values that you already solved
 - *Dynamic programming table*
DP example: Rocks game

- Two players
- Two piles of rocks with p_1 rocks in pile 1, and p_2 rocks in pile 2
- In turn, each player picks:
 - One rock from either pile 1 or pile 2; OR
 - One rock from pile 1 and one rock from pile 2
- The player that picks the last rock wins
DP algorithm for Player 1

- Problem: \(p_1 = p_2 = 10 \)
- Solve more general problem of \(p_1 = n \) and \(p_2 = m \)
- It’s hard to directly calculate for \(n=5 \) and \(m=6 \); we need to solve smaller problems
DP algorithm for Player 1

<table>
<thead>
<tr>
<th>pile2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1
DP algorithm for Player 1

Player 1 cannot win for 2,0 and 0,2

<table>
<thead>
<tr>
<th>pile1</th>
<th>pile2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>W</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>W</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
DP algorithm for Player 1

<table>
<thead>
<tr>
<th>pile2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>L</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1
DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1
DP algorithm for Player 1

<table>
<thead>
<tr>
<th>pile2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>W</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Player 1 cannot win for 2,2

Any move causes his opponent to go to W state
DP “moves”

When you are at position \((i,j)\)

Go to:

Pick from pile 1: \((i-1, j)\)

Pick from pile 2: \((i, j-1)\)

Pick from both piles 1 and 2: \((i-1, j-1)\)
DP final table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
</tr>
<tr>
<td>8</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
</tr>
</tbody>
</table>

Also keep track of the choices you need to make to achieve W and L states: traceback table
Algorithm design techniques

- **Divide and conquer:**
 - Split, solve, merge
 - Mergesort

- **Machine learning:**
 - Analyze previously available solutions, calculate statistics, apply most likely solution

- **Randomized algorithms:**
 - Pick a solution randomly, test if it works. If not, pick another random solution
Tractable vs intractable

- Tractable algorithms: there exists a solution with $O(f(n))$ run time, where $f(n)$ is polynomial.
- P is the set of problems that are known to be solvable in polynomial time.
- NP is the set of problems that are verifiable in polynomial time.
 - NP: “non-deterministic polynomial”

$P \subset \overline{P}$
NP-hard

- **NP-hard**: non-deterministic polynomial hard
 - Set of problems that are “at least as hard as the hardest problems in NP”
 - There are no known polynomial time optimal solutions
 - There *may* be polynomial-time *approximate* solutions
NP-Complete

A decision problem C is in NPC if:

- C is in NP
- Every problem in NP is reducible to C in polynomial time

That means: if you could solve any NPC problem in polynomial time, then you can solve all of them in polynomial time.

Decision problems: outputs “yes” or “no”
NP-intermediate

- Problems that are in NP; but not in either NPC or NP-hard
P vs. NP

- We do not know whether $P=NP$ or $P\neq NP$
 - Principal unsolved problem in computer science
 - It is believed that $P\neq NP$
P vs. NP vs. NPC vs. NP-hard

- **P ≠ NP**
- **P = NP = NP-Complete**
Examples

- **P:**
 - Sorting numbers, searching numbers, pairwise sequence alignment, etc.

- **NP-complete:**
 - Subset-sum, traveling salesman, etc.

- **NP-intermediate:**
 - Factorization, graph isomorphism, etc.
Historical reference

- The notion of NP-Completeness: Stephen Cook and Leonid Levin independently in 1971
 - First NP-Complete problem to be identified: Boolean satisfiability problem (SAT)
 - Cook-Levin theorem
- More NPC problems: Richard Karp, 1972
 - “21 NPC Problems”
- Now there are thousands....