
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Reminder

 The TA will hold a few recitation sessions for the

students from non-CS departments

 Quick version of CS201 and CS202

 Details of big-oh notation

 Basic data structures

 Email your schedules to ekayaaslan@gmail.com

Computational complexity (basic)

 When we develop or use an algorithm, we

would like to know how its run time and

memory requirements will scale with respect

to data size

 Big-O Notation, and its counterparts: Limiting

behavior of a function

 O(f(x)): Upper bound

 Ω(f(x)): Lower bound

 Θ(f(x)): Tight bound

Bounds

 f(x) is O(g(x)) if there are positive real

constants c and x0 such that f(x) ≤ cg(x) for

all values of x ≥ x0.

 f(x) is Ω(g(x)) if there are positive real

constants c and x0 such that f(x) ≥ cg(x) for

all values of x ≥ x0.

 f(x) is Θ(g(x)) if f(x) = O(g(x)) and f(x) =

Ω(g(x))

Bounds

f(n)=O(g(n)) f(n)=Ω(g(n)) f(n)=Θ(g(n))

n2 = O(n2)

n2 + n = O(n2)

n2 + 1000n = O(n2)

5000n2 + 1000n = O(n2)

Constants do not matter!

http://meherchilakalapudi.wordpress.com/2012/09/14/data-structures-1asymptotic-analysis/

Fast vs. slow algorithms

1

8

64

512

4096

32768

262144

2097152

16777216

134217728

1.074E+09

8.59E+09

2 3 4 5 6 7 8 9 10

nn

2n

n!

nlogn

n2

n
logn

1

Polynomial vs. exponential

 Polynomial algorithms: run time is bounded

by a polynomial function (addition,

subtraction, multiplication, division, non-

negative integer exponents)

 n, n2, n5000, etc.

 Exponential algorithms: run time is bounded

by an exponential function, where exponent

is n

 nn, 2n, etc.

Fast vs. Slow: Fibonacci

 Fibonacci series:

 Fn = Fn-1 + Fn-2

 F1 = F2 = 1

 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Two Fibonacci algoritms

O(2n)

O(n)

Recursion or no recursion?

Why is it not a good idea to write recursive

algorithms when you can write non-recursive

versions?

Recursion tree for Fibonacci

Sample problem: Change

 Input: An amount of money M, in cents

 Output: Smallest number of coins that adds

up to M

 Quarters (25c): q

 Dimes (10c): d

 Nickels (5c): n

 Pennies (1c): p

 Or, in general, c1, c2, …, cd (d possible

denominations)

Algorithm design techniques

 Exhaustive search / brute force

 Examine every possible alternative to find a

solution

Algorithm design techniques

 Branch and bound:

 Omit a large number of alternatives when

performing brute force

Algorithm design techniques

 Greedy algorithms:

 Choose the “most attractive” alternative at each

iteration

Algorithm design techniques

 Dynamic Programming:

 Break problems into subproblems; solve

subproblems; merge solutions of subproblems to

solve the real problem

 Keep track of computations to avoid recomputing

values that you already solved

 Dynamic programming table

DP example: Rocks game

 Two players

 Two piles of rocks with p1 rocks in pile 1, and

p2 rocks in pile 2

 In turn, each player picks:

 One rock from either pile 1 or pile 2; OR

 One rock from pile 1 and one rock from pile2

 The player that picks the last rock wins

DP algorithm for Player 1

 Problem: p1 = p2 = 10

 Solve more general problem of p1 = n and

p2 = m

 It’s hard to directly calculate for n=5 and m=6;

we need to solve smaller problems

DP algorithm for Player 1

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1

pile2

pile1

DP algorithm for Player 1

Player 1 cannot win for 2,0 and 0,2

pile2

pile1

DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

pile2

pile1

DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

pile2

pile1

DP algorithm for Player 1

Player 1 cannot win for 2,2

Any move causes his opponent to go to W state

pile2

pile1

DP “moves”

When you are at position (i,j)

Go to:

Pick from pile 1:

Pick from pile 2:

Pick from both piles 1 and 2:

(i-1, j)

(i, j-1)

(i-1, j-1)

DP final table

Also keep track of the choices you need to make to achieve W

and L states: traceback table

Algorithm design techniques

 Divide and conquer:

 Split, solve, merge

 Mergesort

 Machine learning:

 Analyze previously available solutions, calculate

statistics, apply most likely solution

 Randomized algorithms:

 Pick a solution randomly, test if it works. If not,

pick another random solution

Tractable vs intractable

 Tractable algorithms: there exists a solution

with O(f(n)) run time, where f(n) is polynomial

 P is the set of problems that are known to be

solvable in polynomial time

 NP is the set of problems that are verifiable in

polynomial time

 NP: “non-deterministic polynomial”

NPP

NP-hard

 NP-hard: non-deterministic polynomial hard

 Set of problems that are “at least as hard as the

hardest problems in NP”

 There are no known polynomial time optimal

solutions

 There may be polynomial-time approximate

solutions

NP-Complete

 A decision problem C is in NPC if :

 C is in NP

 Every problem in NP is reducible to C in

polynomial time

That means: if you could solve any NPC problem in

polynomial time, then you can solve all of them in

polynomial time

 Decision problems: outputs “yes” or “no”

NP-intermediate

 Problems that are in NP; but not in either

NPC or NP-hard

P vs. NP

 We do not know whether P=NP or P≠NP

 Principal unsolved problem in computer science

 It is believed that P≠NP

P vs. NP vs. NPC vs. NP-hard

Examples

 P:

 Sorting numbers, searching numbers, pairwise

sequence alignment, etc.

 NP-complete:

 Subset-sum, traveling salesman, etc.

 NP-intermediate:

 Factorization, graph isomorphism, etc.

Historical reference

 The notion of NP-Completeness: Stephen

Cook and Leonid Levin independently in

1971

 First NP-Complete problem to be identified:

Boolean satisfiability problem (SAT)

 Cook-Levin theorem

 More NPC problems: Richard Karp, 1972

 “21 NPC Problems”

 Now there are thousands….

