
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Reminder

 The TA will hold a few recitation sessions for the

students from non-CS departments

 Quick version of CS201 and CS202

 Details of big-oh notation

 Basic data structures

 Email your schedules to ekayaaslan@gmail.com

Computational complexity (basic)

 When we develop or use an algorithm, we

would like to know how its run time and

memory requirements will scale with respect

to data size

 Big-O Notation, and its counterparts: Limiting

behavior of a function

 O(f(x)): Upper bound

 Ω(f(x)): Lower bound

 Θ(f(x)): Tight bound

Bounds

 f(x) is O(g(x)) if there are positive real

constants c and x0 such that f(x) ≤ cg(x) for

all values of x ≥ x0.

 f(x) is Ω(g(x)) if there are positive real

constants c and x0 such that f(x) ≥ cg(x) for

all values of x ≥ x0.

 f(x) is Θ(g(x)) if f(x) = O(g(x)) and f(x) =

Ω(g(x))

Bounds

f(n)=O(g(n)) f(n)=Ω(g(n)) f(n)=Θ(g(n))

n2 = O(n2)

n2 + n = O(n2)

n2 + 1000n = O(n2)

5000n2 + 1000n = O(n2)

Constants do not matter!

http://meherchilakalapudi.wordpress.com/2012/09/14/data-structures-1asymptotic-analysis/

Fast vs. slow algorithms

1

8

64

512

4096

32768

262144

2097152

16777216

134217728

1.074E+09

8.59E+09

2 3 4 5 6 7 8 9 10

nn

2n

n!

nlogn

n2

n
logn

1

Polynomial vs. exponential

 Polynomial algorithms: run time is bounded

by a polynomial function (addition,

subtraction, multiplication, division, non-

negative integer exponents)

 n, n2, n5000, etc.

 Exponential algorithms: run time is bounded

by an exponential function, where exponent

is n

 nn, 2n, etc.

Fast vs. Slow: Fibonacci

 Fibonacci series:

 Fn = Fn-1 + Fn-2

 F1 = F2 = 1

 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Two Fibonacci algoritms

O(2n)

O(n)

Recursion or no recursion?

Why is it not a good idea to write recursive

algorithms when you can write non-recursive

versions?

Recursion tree for Fibonacci

Sample problem: Change

 Input: An amount of money M, in cents

 Output: Smallest number of coins that adds

up to M

 Quarters (25c): q

 Dimes (10c): d

 Nickels (5c): n

 Pennies (1c): p

 Or, in general, c1, c2, …, cd (d possible

denominations)

Algorithm design techniques

 Exhaustive search / brute force

 Examine every possible alternative to find a

solution

Algorithm design techniques

 Branch and bound:

 Omit a large number of alternatives when

performing brute force

Algorithm design techniques

 Greedy algorithms:

 Choose the “most attractive” alternative at each

iteration

Algorithm design techniques

 Dynamic Programming:

 Break problems into subproblems; solve

subproblems; merge solutions of subproblems to

solve the real problem

 Keep track of computations to avoid recomputing

values that you already solved

 Dynamic programming table

DP example: Rocks game

 Two players

 Two piles of rocks with p1 rocks in pile 1, and

p2 rocks in pile 2

 In turn, each player picks:

 One rock from either pile 1 or pile 2; OR

 One rock from pile 1 and one rock from pile2

 The player that picks the last rock wins

DP algorithm for Player 1

 Problem: p1 = p2 = 10

 Solve more general problem of p1 = n and

p2 = m

 It’s hard to directly calculate for n=5 and m=6;

we need to solve smaller problems

DP algorithm for Player 1

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1

pile2

pile1

DP algorithm for Player 1

Player 1 cannot win for 2,0 and 0,2

pile2

pile1

DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

pile2

pile1

DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

pile2

pile1

DP algorithm for Player 1

Player 1 cannot win for 2,2

Any move causes his opponent to go to W state

pile2

pile1

DP “moves”

When you are at position (i,j)

Go to:

Pick from pile 1:

Pick from pile 2:

Pick from both piles 1 and 2:

(i-1, j)

(i, j-1)

(i-1, j-1)

DP final table

Also keep track of the choices you need to make to achieve W

and L states: traceback table

Algorithm design techniques

 Divide and conquer:

 Split, solve, merge

 Mergesort

 Machine learning:

 Analyze previously available solutions, calculate

statistics, apply most likely solution

 Randomized algorithms:

 Pick a solution randomly, test if it works. If not,

pick another random solution

Tractable vs intractable

 Tractable algorithms: there exists a solution

with O(f(n)) run time, where f(n) is polynomial

 P is the set of problems that are known to be

solvable in polynomial time

 NP is the set of problems that are verifiable in

polynomial time

 NP: “non-deterministic polynomial”

NPP

NP-hard

 NP-hard: non-deterministic polynomial hard

 Set of problems that are “at least as hard as the

hardest problems in NP”

 There are no known polynomial time optimal

solutions

 There may be polynomial-time approximate

solutions

NP-Complete

 A decision problem C is in NPC if :

 C is in NP

 Every problem in NP is reducible to C in

polynomial time

That means: if you could solve any NPC problem in

polynomial time, then you can solve all of them in

polynomial time

 Decision problems: outputs “yes” or “no”

NP-intermediate

 Problems that are in NP; but not in either

NPC or NP-hard

P vs. NP

 We do not know whether P=NP or P≠NP

 Principal unsolved problem in computer science

 It is believed that P≠NP

P vs. NP vs. NPC vs. NP-hard

Examples

 P:

 Sorting numbers, searching numbers, pairwise

sequence alignment, etc.

 NP-complete:

 Subset-sum, traveling salesman, etc.

 NP-intermediate:

 Factorization, graph isomorphism, etc.

Historical reference

 The notion of NP-Completeness: Stephen

Cook and Leonid Levin independently in

1971

 First NP-Complete problem to be identified:

Boolean satisfiability problem (SAT)

 Cook-Levin theorem

 More NPC problems: Richard Karp, 1972

 “21 NPC Problems”

 Now there are thousands….

