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Reminder 

 The TA will hold a few recitation sessions for the 

students from non-CS departments 

 Quick version of CS201 and CS202 

 Details of big-oh notation 

 Basic data structures 

 Email your schedules to ekayaaslan@gmail.com 

 



Computational complexity (basic) 

 When we develop or use an algorithm, we 

would like to know how its run time and 

memory requirements will scale with respect 

to data size 

 Big-O Notation, and its counterparts: Limiting 

behavior of a function 

 O(f(x)): Upper bound 

 Ω(f(x)): Lower bound 

 Θ(f(x)): Tight bound 

 



Bounds 

 f(x) is O(g(x)) if there are positive real 

constants c and x0 such that f(x) ≤ cg(x) for 

all values of x ≥ x0. 

 f(x) is Ω(g(x)) if there are positive real 

constants c and x0 such that f(x) ≥ cg(x) for 

all values of x ≥ x0. 

 f(x) is Θ(g(x)) if f(x) = O(g(x)) and f(x) = 

Ω(g(x)) 

 

 



Bounds 

f(n)=O(g(n)) f(n)=Ω(g(n)) f(n)=Θ(g(n)) 

n2 = O(n2) 

n2 + n = O(n2) 

n2 + 1000n = O(n2) 

5000n2 + 1000n = O(n2) 

Constants do not matter! 

http://meherchilakalapudi.wordpress.com/2012/09/14/data-structures-1asymptotic-analysis/ 



Fast vs. slow algorithms 
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Polynomial vs. exponential 

 Polynomial algorithms: run time is bounded 

by a polynomial function (addition, 

subtraction, multiplication, division, non-

negative integer exponents) 

 n, n2, n5000, etc. 

 Exponential algorithms: run time is bounded 

by an exponential function, where exponent 

is n 

 nn, 2n, etc. 



Fast vs. Slow: Fibonacci 

 Fibonacci series:  

 Fn = Fn-1 + Fn-2 

 F1 = F2 = 1 

 1, 1, 2, 3, 5, 8, 13, 21, 34, … 



Two Fibonacci algoritms 

O(2n) 

O(n) 



Recursion or no recursion? 

Why is it not a good idea to write recursive 

algorithms when you can write non-recursive 

versions? 



Recursion tree for Fibonacci 



Sample problem: Change 

 Input: An amount of money M, in cents 

 Output: Smallest number of coins that adds 

up to M 

 Quarters (25c): q 

 Dimes (10c): d 

 Nickels (5c): n 

 Pennies (1c): p 

 Or, in general, c1, c2, …, cd   (d possible 

denominations) 



Algorithm design techniques 

 Exhaustive search / brute force 

 Examine every possible alternative to find a 

solution 



Algorithm design techniques 

 Branch and bound: 

 Omit a large number of alternatives when 

performing brute force  



Algorithm design techniques 

 Greedy algorithms: 

 Choose the “most attractive” alternative at each 

iteration 



Algorithm design techniques 

 Dynamic Programming: 

 Break problems into subproblems; solve 

subproblems; merge solutions of subproblems to 

solve the real problem 

 Keep track of computations to avoid recomputing 

values that you already solved 

 Dynamic programming table 



DP example: Rocks game 

 Two players 

 Two piles of rocks with p1 rocks in pile 1, and 

p2 rocks in pile 2 

 In turn, each player picks: 

 One rock from either pile 1 or pile 2; OR 

 One rock from pile 1 and one rock from pile2 

 The player that picks the last rock wins 



DP algorithm for Player 1 

 Problem: p1 = p2 = 10 

 Solve more general problem of p1 = n   and 

p2 = m 

 It’s hard to directly calculate for n=5 and m=6; 

we need to solve smaller problems 

 



DP algorithm for Player 1 

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1 

pile2 

pile1 



DP algorithm for Player 1 

Player 1 cannot win for 2,0 and 0,2 

pile2 

pile1 



DP algorithm for Player 1 

Player 1 can win for 2,1 if he picks one from pile2 

 

Player 1 can win for 1,2 if he picks one from pile1 

 

pile2 

pile1 



DP algorithm for Player 1 

Player 1 can win for 2,1 if he picks one from pile2 

 

Player 1 can win for 1,2 if he picks one from pile1 

 

pile2 

pile1 



DP algorithm for Player 1 

Player 1 cannot win for 2,2  

 

Any move causes his opponent to go to W state 

pile2 

pile1 



DP “moves” 

When you are at position (i,j) 

 

Go to: 

 

Pick from pile 1:  

 

 

 

 

Pick from pile 2: 

 

 

 

 

Pick from both piles 1 and 2: 

(i-1, j) 

(i, j-1) 

(i-1, j-1) 



DP final table 

Also keep track of the choices you need to make to achieve W 

and L states:   traceback table 



Algorithm design techniques 

 Divide and conquer: 

 Split, solve, merge 

 Mergesort 

 Machine learning: 

 Analyze previously available solutions, calculate 

statistics, apply most likely solution 

 Randomized algorithms: 

 Pick a solution randomly, test if it works. If not, 

pick another random solution 



Tractable vs intractable 

 Tractable algorithms: there exists a solution 

with O(f(n)) run time, where f(n) is polynomial 

 P is the set of problems that are known to be 

solvable in polynomial time 

 NP is the set of problems that are verifiable in 

polynomial time 

 NP: “non-deterministic polynomial” 

 
NPP



NP-hard 

 NP-hard: non-deterministic polynomial hard 

 Set of problems that are “at least as hard as the 

hardest problems in NP” 

 There are no known polynomial time optimal 

solutions 

 There may be polynomial-time approximate 

solutions 

 



NP-Complete 

 A decision problem C is in NPC if : 

 C is in NP 

 Every problem in NP is reducible to C in 

polynomial time 

 

That means: if you could solve any NPC problem in 

polynomial time, then you can solve all of them in 

polynomial time 

    Decision problems: outputs “yes” or “no” 

 



NP-intermediate 

 Problems that are in NP; but not in either 

NPC or NP-hard 



P vs. NP 

 We do not know whether P=NP or P≠NP 

 Principal unsolved problem in computer science 

 It is believed that P≠NP  



P vs. NP vs. NPC vs. NP-hard 



Examples 

 P: 

 Sorting numbers, searching numbers, pairwise 

sequence alignment, etc. 

 NP-complete: 

 Subset-sum, traveling salesman, etc. 

 NP-intermediate: 

 Factorization, graph isomorphism, etc. 

 



Historical reference 

 The notion of NP-Completeness: Stephen 

Cook and Leonid Levin  independently in 

1971 

 First NP-Complete problem to be identified: 

Boolean satisfiability problem (SAT) 

 Cook-Levin theorem 

 More NPC problems: Richard Karp, 1972 

 “21 NPC Problems” 

 Now there are thousands…. 


