CS481: Bioinformatics Algorithms

> Can Alkan EA224 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Reminder

- The TA will hold a few recitation sessions for the students from non-CS departments
 - Quick version of CS201 and CS202
 - Details of big-oh notation
 - Basic data structures
 - Email your schedules to ekayaaslan@gmail.com

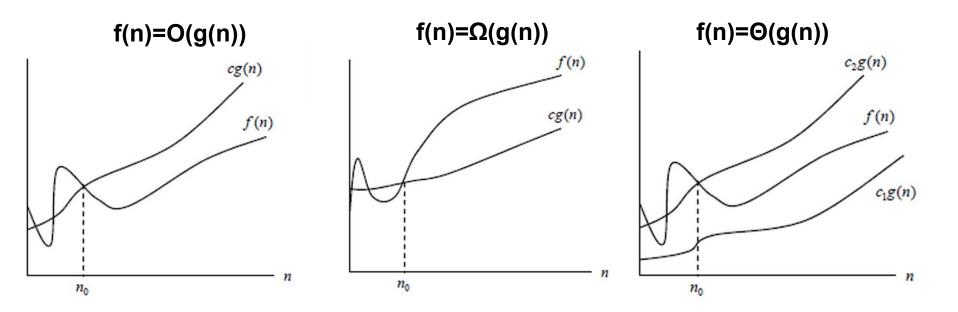
Computational complexity (basic)

- When we develop or use an algorithm, we would like to know how its run time and memory requirements will scale with respect to data size
- Big-O Notation, and its counterparts: Limiting behavior of a function
 - O(f(x)): Upper bound
 - $\Omega(f(x))$: Lower bound
 - \Box $\Theta(f(x))$: Tight bound

Bounds

- *f(x)* is *O(g(x))* if there are positive real constants *c* and *x₀* such that f(x) ≤ cg(x) for all values of *x* ≥ *x₀*.
- f(x) is $\Omega(g(x))$ if there are positive real constants c and x_0 such that $f(x) \ge cg(x)$ for all values of $x \ge x_0$.
- f(x) is $\Theta(g(x))$ if f(x) = O(g(x)) and $f(x) = \Omega(g(x))$

Bounds



$$n^{2} = O(n^{2})$$

$$n^{2} + n = O(n^{2})$$

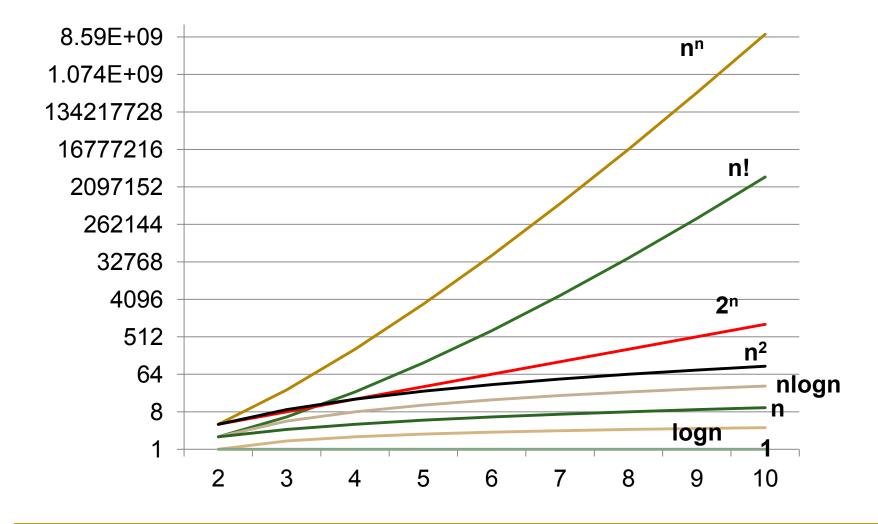
$$n^{2} + 1000n = O(n^{2})$$

$$5000n^{2} + 1000n = O(n^{2})$$

Constants do not matter!

http://meherchilakalapudi.wordpress.com/2012/09/14/data-structures-1asymptotic-analysis/

Fast vs. slow algorithms



Polynomial vs. exponential

- Polynomial algorithms: run time is bounded by a polynomial function (addition, subtraction, multiplication, division, nonnegative integer exponents)
 - □ n, n², n⁵⁰⁰⁰, etc.
- Exponential algorithms: run time is bounded by an exponential function, where exponent is n
 - □ nⁿ, 2ⁿ, etc.

Fast vs. Slow: Fibonacci

Fibonacci series:

Two Fibonacci algoritms

Recursive Fibonacci(n)

- 1 if n = 1 or n = 2 **O(2ⁿ)**
- 2 return 1
- 3 else
- 4 $a \leftarrow \text{RecursiveFibonacci}(n-1)$
- 5 $b \leftarrow \text{RecursiveFibonacci}(n-2)$

O(n)

6 return a + b

FIBONACCI(n)

1
$$F_1 \leftarrow 1$$

$$2 \quad F_2 \leftarrow 1$$

3 for
$$i \leftarrow 3$$
 to n

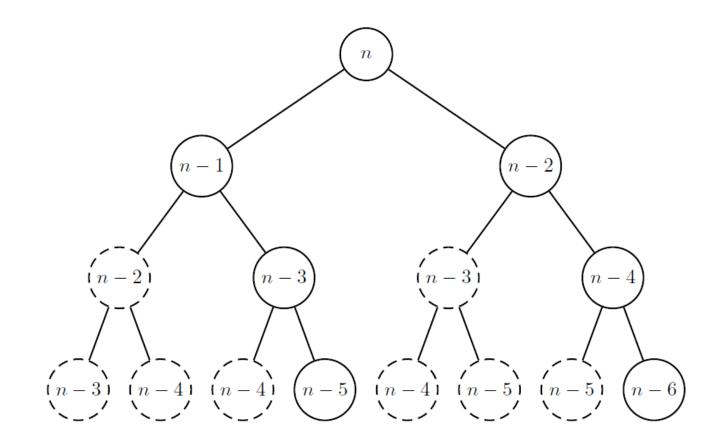
$$4 \qquad F_i \leftarrow F_{i-1} + F_{i-2}$$

5 return F_n

Recursion or no recursion?

Why is it not a good idea to write recursive algorithms when you *can* write non-recursive versions?

Recursion tree for Fibonacci



Sample problem: Change

- Input: An amount of money M, in cents
- Output: Smallest number of coins that adds up to M
 - Quarters (25c): q
 - Dimes (10c): d
 - Nickels (5c): n
 - Pennies (1c): p
 - Or, in general, c₁, c₂, ..., c_d (*d* possible denominations)

Exhaustive search / brute force

Examine every possible alternative to find a solution

```
BRUTEFORCECHANGE(M, \mathbf{c}, d)
    smallestNumberOfCoins \leftarrow \infty
1
    for each (i_1, ..., i_d) from (0, ..., 0) to (M/c_1, ..., M/c_d)
2
         valueOfCoins \leftarrow \sum_{k=1}^{d} i_k c_k
3
         if valueOfCoins = M
4
              numberOfCoins \leftarrow \sum_{k=1}^{d} i_k
5
              if numberOfCoins < smallestNumberOfCoins
6
7
                    smallestNumberOfCoins \leftarrow numberOfCoins
8
                    bestChange \leftarrow (i_1, i_2, \ldots, i_d)
9
    return (bestChange)
```

Branch and bound:

 Omit a large number of alternatives when performing brute force

Greedy algorithms:

 Choose the "most attractive" alternative at each iteration USCHANGE(M)

BETTERCHANGE
$$(M, \mathbf{c}, d)$$

1 $r \leftarrow M$
2 for $k \leftarrow 1$ to d
3 $i_k \leftarrow r/c_k$
4 $r \leftarrow r - c_k \cdot i_k$
5 return (i_1, i_2, \dots, i_d)

 $1 \quad r \leftarrow M$ $2 \quad q \leftarrow r/25$ $3 \quad r \leftarrow r - 25 \cdot q$ $4 \quad d \leftarrow r/10$ $5 \quad r \leftarrow r - 10 \cdot d$ $6 \quad n \leftarrow r/5$ $7 \quad r \leftarrow r - 5 \cdot n$ $8 \quad p \leftarrow r$ $9 \quad \text{return } (q, d, n, p)$

Dynamic Programming:

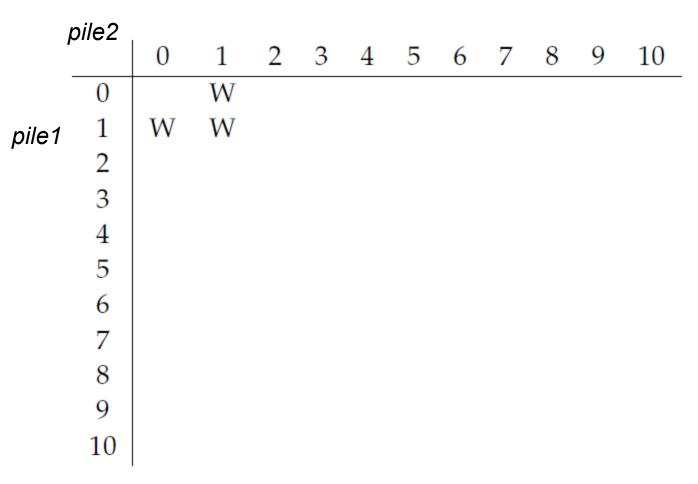
- Break problems into subproblems; solve subproblems; merge solutions of subproblems to solve the real problem
- Keep track of computations to avoid recomputing values that you already solved
- Dynamic programming table

DP example: Rocks game

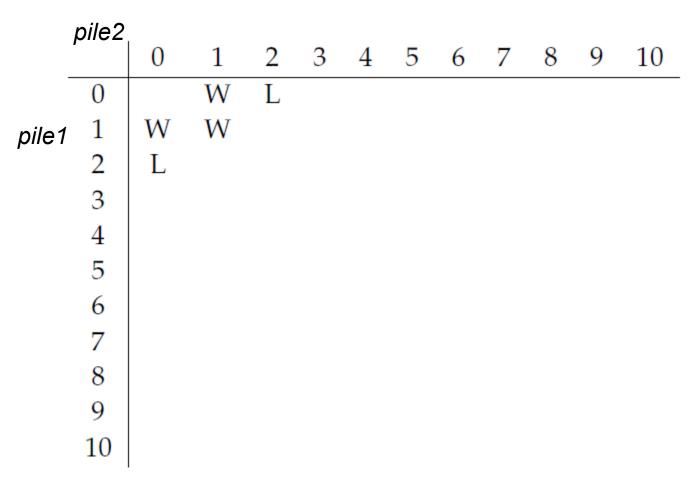
Two players

- Two piles of rocks with p₁ rocks in pile 1, and p₂ rocks in pile 2
- In turn, each player picks:
 - One rock from either pile 1 or pile 2; OR
 - One rock from pile 1 and one rock from pile2
- The player that picks the last rock wins

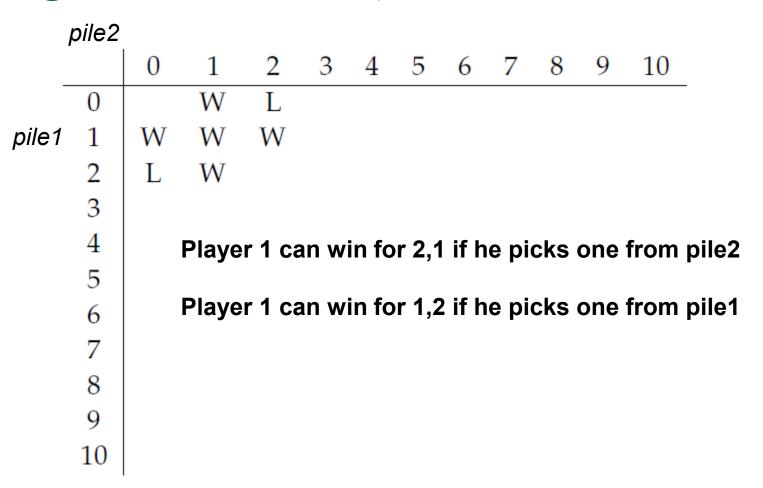
- Problem: $p_1 = p_2 = 10$
- Solve more general problem of $p_1 = n$ and $p_2 = m$
- It's hard to directly calculate for n=5 and m=6; we need to solve smaller problems



Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1



Player 1 cannot win for 2,0 and 0,2

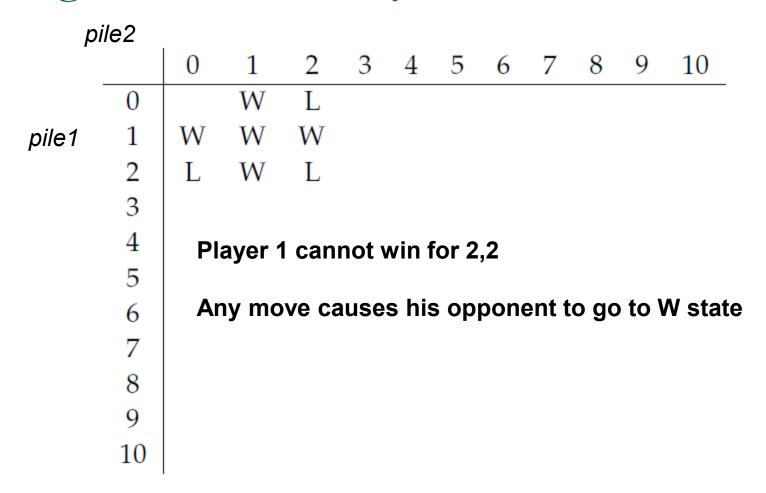


pile2

pile1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1



DP "moves"

When you are at position (i,j)

Go to:

Pick from pile 1: (i-1, j)

Pick from pile 2: (i, j-1)

Pick from both piles 1 and 2: (i-1, j-1)

DP final table

	0	1	2	3	4	5	6	7	8	9	10
0		W	L	W	L	W	L	W	L	W	L
1	W	W	W	W	W	W	W	W	W	W	W
2	L	W	L	W	L	W	L	W	L	W	L
3	W	W	W	W	W	W	W	W	W	W	W
4	L	W	L	W	L	W	L	W	L	W	L
5	W	W	W	W	W	W	W	W	W	W	W
6	L	W	L	W	L	W	L	W	L	W	L
7	W	W	W	W	W	W	W	W	W	W	W
8	L	W	L	W	L	W	L	W	L	W	L
9	W	W	W	W	W	W	W	W	W	W	W
10	L	W	L	W	L	W	L	W	L	W	L

Also keep track of the choices you need to make to achieve W and L states: *traceback table*

Divide and conquer:

- Split, solve, merge
 - Mergesort

Machine learning:

Analyze previously available solutions, calculate statistics, apply most likely solution

Randomized algorithms:

Pick a solution randomly, test if it works. If not, pick another random solution

Tractable vs intractable

- Tractable algorithms: there exists a solution with O(f(n)) run time, where f(n) is *polynomial*
- P is the set of problems that are known to be solvable in polynomial time
- NP is the set of problems that are verifiable in polynomial time
 - NP: "non-deterministic polynomial"

$P \subset P$

NP-hard

NP-hard: non-deterministic polynomial hard

- Set of problems that are "at least as hard as the hardest problems in NP"
- There are no known polynomial time optimal solutions
- There may be polynomial-time approximate solutions

NP-Complete

- A *decision problem* C is in NPC if :
 - C is in NP
 - Every problem in NP is reducible to C in polynomial time
 - That means: if you could solve any NPC problem in polynomial time, then you can solve all of them in polynomial time
 - Decision problems: outputs "yes" or "no"

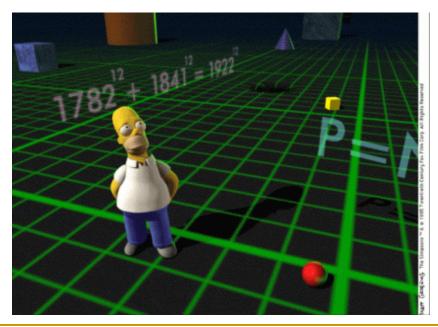
NP-intermediate

Problems that are in NP; but not in either NPC or NP-hard

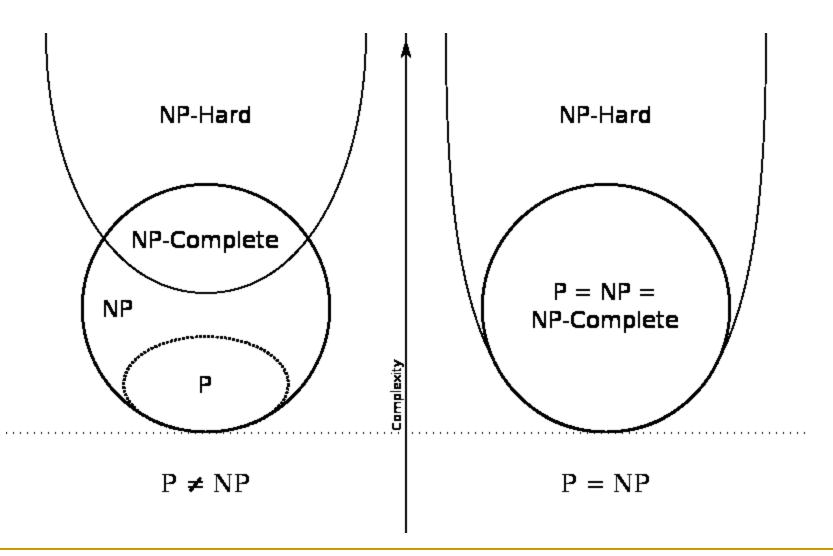
P vs. NP

We do not know whether P=NP or P≠NP

- Principal unsolved problem in computer science
- It is believed that P≠NP



P vs. NP vs. NPC vs. NP-hard



Examples

P:

- Sorting numbers, searching numbers, pairwise sequence alignment, etc.
- NP-complete:
 - Subset-sum, traveling salesman, etc.
- NP-intermediate:
 - □ Factorization, graph isomorphism, etc.

Historical reference

- The notion of NP-Completeness: Stephen Cook and Leonid Levin independently in 1971
 - First NP-Complete problem to be identified: Boolean satisfiability problem (SAT)
 - Cook-Levin theorem
- More NPC problems: Richard Karp, 1972
 - "21 NPC Problems"
- Now there are thousands....