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Reminder 

 The TA will hold a few recitation sessions for the 

students from non-CS departments 

 Quick version of CS201 and CS202 

 Details of big-oh notation 

 Basic data structures 

 Email your schedules to ekayaaslan@gmail.com 

 



Computational complexity (basic) 

 When we develop or use an algorithm, we 

would like to know how its run time and 

memory requirements will scale with respect 

to data size 

 Big-O Notation, and its counterparts: Limiting 

behavior of a function 

 O(f(x)): Upper bound 

 Ω(f(x)): Lower bound 

 Θ(f(x)): Tight bound 

 



Bounds 

 f(x) is O(g(x)) if there are positive real 

constants c and x0 such that f(x) ≤ cg(x) for 

all values of x ≥ x0. 

 f(x) is Ω(g(x)) if there are positive real 

constants c and x0 such that f(x) ≥ cg(x) for 

all values of x ≥ x0. 

 f(x) is Θ(g(x)) if f(x) = O(g(x)) and f(x) = 

Ω(g(x)) 

 

 



Bounds 

f(n)=O(g(n)) f(n)=Ω(g(n)) f(n)=Θ(g(n)) 

n2 = O(n2) 

n2 + n = O(n2) 

n2 + 1000n = O(n2) 

5000n2 + 1000n = O(n2) 

Constants do not matter! 

http://meherchilakalapudi.wordpress.com/2012/09/14/data-structures-1asymptotic-analysis/ 



Fast vs. slow algorithms 
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Polynomial vs. exponential 

 Polynomial algorithms: run time is bounded 

by a polynomial function (addition, 

subtraction, multiplication, division, non-

negative integer exponents) 

 n, n2, n5000, etc. 

 Exponential algorithms: run time is bounded 

by an exponential function, where exponent 

is n 

 nn, 2n, etc. 



Fast vs. Slow: Fibonacci 

 Fibonacci series:  

 Fn = Fn-1 + Fn-2 

 F1 = F2 = 1 

 1, 1, 2, 3, 5, 8, 13, 21, 34, … 



Two Fibonacci algoritms 

O(2n) 

O(n) 



Recursion or no recursion? 

Why is it not a good idea to write recursive 

algorithms when you can write non-recursive 

versions? 



Recursion tree for Fibonacci 



Sample problem: Change 

 Input: An amount of money M, in cents 

 Output: Smallest number of coins that adds 

up to M 

 Quarters (25c): q 

 Dimes (10c): d 

 Nickels (5c): n 

 Pennies (1c): p 

 Or, in general, c1, c2, …, cd   (d possible 

denominations) 



Algorithm design techniques 

 Exhaustive search / brute force 

 Examine every possible alternative to find a 

solution 



Algorithm design techniques 

 Branch and bound: 

 Omit a large number of alternatives when 

performing brute force  



Algorithm design techniques 

 Greedy algorithms: 

 Choose the “most attractive” alternative at each 

iteration 



Algorithm design techniques 

 Dynamic Programming: 

 Break problems into subproblems; solve 

subproblems; merge solutions of subproblems to 

solve the real problem 

 Keep track of computations to avoid recomputing 

values that you already solved 

 Dynamic programming table 



DP example: Rocks game 

 Two players 

 Two piles of rocks with p1 rocks in pile 1, and 

p2 rocks in pile 2 

 In turn, each player picks: 

 One rock from either pile 1 or pile 2; OR 

 One rock from pile 1 and one rock from pile2 

 The player that picks the last rock wins 



DP algorithm for Player 1 

 Problem: p1 = p2 = 10 

 Solve more general problem of p1 = n   and 

p2 = m 

 It’s hard to directly calculate for n=5 and m=6; 

we need to solve smaller problems 

 



DP algorithm for Player 1 

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1 

pile2 

pile1 



DP algorithm for Player 1 

Player 1 cannot win for 2,0 and 0,2 

pile2 

pile1 



DP algorithm for Player 1 

Player 1 can win for 2,1 if he picks one from pile2 

 

Player 1 can win for 1,2 if he picks one from pile1 

 

pile2 

pile1 



DP algorithm for Player 1 

Player 1 can win for 2,1 if he picks one from pile2 

 

Player 1 can win for 1,2 if he picks one from pile1 

 

pile2 

pile1 



DP algorithm for Player 1 

Player 1 cannot win for 2,2  

 

Any move causes his opponent to go to W state 

pile2 

pile1 



DP “moves” 

When you are at position (i,j) 

 

Go to: 

 

Pick from pile 1:  

 

 

 

 

Pick from pile 2: 

 

 

 

 

Pick from both piles 1 and 2: 

(i-1, j) 

(i, j-1) 

(i-1, j-1) 



DP final table 

Also keep track of the choices you need to make to achieve W 

and L states:   traceback table 



Algorithm design techniques 

 Divide and conquer: 

 Split, solve, merge 

 Mergesort 

 Machine learning: 

 Analyze previously available solutions, calculate 

statistics, apply most likely solution 

 Randomized algorithms: 

 Pick a solution randomly, test if it works. If not, 

pick another random solution 



Tractable vs intractable 

 Tractable algorithms: there exists a solution 

with O(f(n)) run time, where f(n) is polynomial 

 P is the set of problems that are known to be 

solvable in polynomial time 

 NP is the set of problems that are verifiable in 

polynomial time 

 NP: “non-deterministic polynomial” 

 
NPP



NP-hard 

 NP-hard: non-deterministic polynomial hard 

 Set of problems that are “at least as hard as the 

hardest problems in NP” 

 There are no known polynomial time optimal 

solutions 

 There may be polynomial-time approximate 

solutions 

 



NP-Complete 

 A decision problem C is in NPC if : 

 C is in NP 

 Every problem in NP is reducible to C in 

polynomial time 

 

That means: if you could solve any NPC problem in 

polynomial time, then you can solve all of them in 

polynomial time 

    Decision problems: outputs “yes” or “no” 

 



NP-intermediate 

 Problems that are in NP; but not in either 

NPC or NP-hard 



P vs. NP 

 We do not know whether P=NP or P≠NP 

 Principal unsolved problem in computer science 

 It is believed that P≠NP  



P vs. NP vs. NPC vs. NP-hard 



Examples 

 P: 

 Sorting numbers, searching numbers, pairwise 

sequence alignment, etc. 

 NP-complete: 

 Subset-sum, traveling salesman, etc. 

 NP-intermediate: 

 Factorization, graph isomorphism, etc. 

 



Historical reference 

 The notion of NP-Completeness: Stephen 

Cook and Leonid Levin  independently in 

1971 

 First NP-Complete problem to be identified: 

Boolean satisfiability problem (SAT) 

 Cook-Levin theorem 

 More NPC problems: Richard Karp, 1972 

 “21 NPC Problems” 

 Now there are thousands…. 


