CS481: Bioinformatics
Algorithms

Can Alkan
EA224
calkan@cs.bilkent.edu.tr

http://Iwww.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Reminder

The TA will hold a few recitation sessions for the
students from non-CS departments

o Quick version of CS201 and CS202

o Details of big-oh notation

o Basic data structures

o Email your schedules to ekayaaslan@gmail.com

Computational complexity (basic)

When we develop or use an algorithm, we
would like to know how its run time and

memory requirements will scale with respect
to data size

Big-O Notation, and its counterparts: Limiting
behavior of a function

o O(f(x)): Upper bound

o Q(f(x)): Lower bound

o O(f(x)): Tight bound

Bounds

f(x) is O(g(x)) if there are positive real
constants ¢ and x, such that f(x) < cg(x) for
all values of x 2 x,,.

f(x) is Q(g(x)) if there are positive real
constants ¢ and x, such that f(x) = cg(x) for
all values of x 2 x,,

f(x) is ©(g(x)) if f(x) = O(g(x)) and f(x) =
Q(9(x))

Bounds

f(n)=0(g(n))

cg(n)

f(n)

-— - -

g

Constants do not matter!

f(n)=Q(g(n)) f(n)=0(g(n))
f(n) cg(n)

cg(n) f(n)

g

n? = O(n?)

n? + n = O(n?)

n? + 1000n = O(n?)
5000n? + 1000n = O(n?)

http://meherchilakalapudi.wordpress.com/2012/09/14/data-structures-1asymptotic-analysis/

Fast vs. slow algorithms

8.59E+09 —
1.074E+09 "
134217728
16777216 e
/ n!
2097152 e
262144 e
32768 //////// /////’///,
4096 on
512
64 / / / n?

L nlogn
8 - - n
—= fogn

1

Polynomial vs. exponential

Polynomial algorithms: run time is bounded
by a polynomial function (addition,
subtraction, multiplication, division, non-
negative integer exponents)

a n, n?, n°%90 etc.

Exponential algorithms: run time is bounded
by an exponential function, where exponent
IS n

o nh, 2" etc.

Fast vs. Slow: Fibonacci

= Fibonacci series:
J I:n = I:n-1 + Fn-2
0 Fy=F,=1
01,1,2,3,5,8, 13, 21, 34, ...

'Two Fibonacci algoritms

RECURSIVEFIBONACCI(n)

1 ifn=1lorn=2 O(Zn)

2 return 1

else
a +— RECURSIVEFIBONACCI(n — 1)
b +— RECURSIVEFIBONACCI(n — 2)
return a + b

N U1 = W

FIBONACCI(n)
1 Fy 1

2 Fo —1

3 for i+ 3ton
+ Fi — Fi_1 + Fi_o
5 return F),

O(n)

Recursion or no recursion?

Why is it not a good idea to write recursive
algorithms when you can write non-recursive
versions?

Recursion tree for Fibonacci

m ‘?l ln ‘31
t'n ‘31 In 4| In 41 In 4| l'n Jl In 5

/

‘-. / \. / ‘-. -

Sample problem: Change

Input: An amount of money M, in cents

Output: Smallest number of coins that adds
up to M

o Quarters (25¢): g

o Dimes (10c): d

o Nickels (5¢): n

o Pennies (1c): p

a Or, in general, ¢4, C,, ..., Cy (d possible
denominations)

Algorithm design techniques

Exhaustive search / brute force

o Examine every possible alternative to find a
solution

BRUTEFORCECHANGE(M, ¢, d)

1 smallest NumberO fCoins — oo

2 for each (iy,...,iq) from (0,...,0)to (M /cy,.... M/cq)

3 valueO fCoins — Zi:l 11CL

4 if valueO fCoins = M

5 numberO fCoins — Zi:l i

6 if numberO fCoins < smallest NumberO fCoins

7 smallest NumberO fCoins «— numberQO fCoins
8 bestChange «— (i1,12,...,14)

9 return (bestChange)

Algorithm design techniques

Branch and bound:

o Omit a large number of alternatives when
performing brute force

Algorithm design techniques

Greedy algorithms:
o Choose the “most attractive” alternative at each
iteration .
USCHANGE(M)
1 r—M
BETTERCHANGE(M, ¢, d) 2 g r/25
I r—M 3 r—r—25-q
2 for k— 1tod 4 d—r/10
3 ik —T/ck 5 pre—r—10-d
4 P T Cl ik 6 n—r/b
5> return (i1,19,...,174) 7 rer—>5.n
8 p—r
9 return (¢q.d.n,p)

Algorithm design techniques

Dynamic Programming:
o Break problems into subproblems; solve

subproblems; merge solutions of subproblems to
solve the real problem

o Keep track of computations to avoid recomputing
values that you already solved

o Dynamic programming table

DP example: Rocks game

Two players

Two piles of rocks with p, rocks in pile 1, and
p, rocks in pile 2

In turn, each player picks:
o One rock from either pile 1 or pile 2; OR
o One rock from pile 1 and one rock from pile2

The player that picks the last rock wins

DP algorithm for Player 1

Problem: p, = p,=10

Solve more general problem of p, =n and
P2 =M

It's hard to directly calculate for n=5 and m=6;
we need to solve smaller problems

‘ DP algorithm for Player 1

pile2

0 2 3 4 5 6 7 8 9 10

1
W
pile1 W W

(S ™.

O 0o N Oy U1 W=

10

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1

‘ DP algorithm for Player 1

pile2
o 1 2 3 4 5 6 7 8 9 10
0 W L
pier 1 | W W

2 | L

3

4

5

6

7

8

9

10

Player 1 cannot win for 2,0 and 0,2

DP algorithm for Player 1

pile2
0 1 2 3 4 5 6 7 8 9 10
0 W L
pilet 1 | W W W
2 L W
3
4 Player 1 can win for 2,1 if he picks one from pile2
5
6 Player 1 can win for 1,2 if he picks one from pile1
7
8
9
10

DP algorithm for Player 1

pile2

pile1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

DP algorithm for Player 1

pile2
0 1 2 3 4 5 6 7 8 9 10
0 W L
pile1 1 W W W
2 L W L
3
4 Player 1 cannot win for 2,2
5
6 Any move causes his opponent to go to W state
7
8
9
10

DP “moves”

When you are at position (i,j)

Go to:
Pick from pile 1: (i-1, j)
Pick from pile 2: (i, J-1)

Pick from both piles 1 and 2: (i-1, j-1)

"DP final table

10

T I R R
Sz=z=zzzz=z=2z2=Z2
= I s -
Sz=z=zzzz=z=2z2=Z2
S I R i .
SE=z=22zzzz22%2=Z2
= I - B R
SZEZzZz=22=2zE2Z2Z2
A2 AZ2AZ2ZAZ A2
SZEZzZz=22=2zE2Z2Z2

sHEzAz"z-a24

S — e H IO DN o S

Also keep track of the choices you need to make to achieve W

and L states:

traceback table

Algorithm design techniques

Divide and conquer:
o Split, solve, merge
Mergesort

Machine learning:

o Analyze previously available solutions, calculate
statistics, apply most likely solution

Randomized algorithms:

o Pick a solution randomly, test if it works. If not,
pick another random solution

Tractable vs intractable

Tractable algorithms: there exists a solution
with O(f(n)) run time, where f(n) is polynomial

P is the set of problems that are known to be
solvable in polynomial time

NP is the set of problems that are verifiable in
polynomial time

o NP: “non-deterministic polynomial”

Pc /P

NDP-hard

NP-hard: non-deterministic polynomial hard

o Set of problems that are “at least as hard as the
hardest problems in NP”

o There are no known polynomial time optimal
solutions

o There may be polynomial-time approximate
solutions

NP-Complete

A decision problem C is in NPC if :
o Cisin NP

o Every problem in NP is reducible to C in
polynomial time

That means: if you could solve any NPC problem in

polynomial time, then you can solve all of them in
polynomial time

Decision problems: outputs “yes” or “no”

NP-intermediate

Problems that are in NP; but not in either
NPC or NP-hard

P vs. NP

We do not know whether P=NP or P£ZNP

o Principal unsolved problem in computer science
o It is believed that P#NP

P vs. NP vs. NPC vs. NP-hard

A
NP-Hard NP-Hard
v
%
P # NP P = NP

Examples

P:

o Sorting numbers, searching numbers, pairwise
sequence alignment, etc.

NP-complete:
0 Subset-sum, traveling salesman, etc.

NP-intermediate:
o Factorization, graph isomorphism, etc.

Historical reference

The notion of NP-Completeness: Stephen
Cook and Leonid Levin independently in
1971

o First NP-Complete problem to be identified:
Boolean satisfiability problem (SAT)

Cook-Levin theorem

More NPC problems: Richard Karp, 1972
0 “21 NPC Problems”

Now there are thousands....

