
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Early Evolutionary Studies

 Anatomical features were the dominant
criteria used to derive evolutionary
relationships between species since Darwin
till early 1960s

 The evolutionary relationships derived from
these relatively subjective observations were
often inconclusive. Some of them were later
proved incorrect

Evolution and DNA Analysis:

the Giant Panda Riddle

 For roughly 100 years scientists were unable to
figure out which family the giant panda belongs to

 Giant pandas look like bears but have features that
are unusual for bears and typical for raccoons, e.g.,
they do not hibernate

 In 1985, Steven O’Brien and colleagues solved the
giant panda classification problem using DNA
sequences and algorithms

Evolutionary Tree of Bears and Raccoons

Evolutionary Trees: DNA-based Approach

 40 years ago: Emile Zuckerkandl and Linus
Pauling brought reconstructing evolutionary
relationships with DNA into the spotlight

 In the first few years after Zuckerkandl and
Pauling proposed using DNA for evolutionary
studies, the possibility of reconstructing
evolutionary trees by DNA analysis

 Now it is a dominant approach to study
evolution.

Who are closer?

Out of Africa Hypothesis

 Around the time the giant panda riddle was

solved, a DNA-based reconstruction of the

human evolutionary tree led to the Out of

Africa Hypothesis that claims our

common ancestor lived in Africa roughly

200,000 years ago

Human Evolutionary Tree (cont’d)

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm

Evolutionary Tree of Humans (mtDNA)

 The evolutionary

tree separates one

group of Africans

from a group

containing all five

populations.

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)

Evolutionary Tree of Humans: (microsatellites)

• Neighbor joining

tree for 14 human

populations

genotyped with 30

microsatellite loci.

Evolutionary Trees

How are these trees built from DNA sequences?

Evolutionary Trees

How are these trees built from DNA sequences?

 leaves represent existing species

 internal vertices represent ancestors

 root represents the oldest evolutionary

ancestor

Rooted and Unrooted Trees

In the unrooted tree the position of

the root (“oldest ancestor”) is

unknown. Otherwise, they are like

rooted trees

Distances in Trees

 Edges may have weights reflecting:

 Number of mutations on evolutionary path from

one species to another

 Time estimate for evolution of one species into

another

 In a tree T, we often compute

 dij(T) - the length of a path between leaves i and j

 dij(T) – tree distance between i and j

Distance in Trees: an Exampe

 d1,4 = 12 + 13 + 14 + 17 + 12 = 68

i

j

Distance Matrix

 Given n species, we can compute the n x n

distance matrix Dij

 Dij may be defined as the edit distance between

a gene in species i and species j, where the

gene of interest is sequenced for all n species.

 Dij – edit distance between i and j

Edit Distance vs. Tree Distance

 Given n species, we can compute the n x n

distance matrix Dij

 Dij may be defined as the edit distance between

a gene in species i and species j, where the

gene of interest is sequenced for all n species.

 Dij – edit distance between i and j

 Note the difference with

 dij(T) – tree distance between i and j

Fitting Distance Matrix

 Given n species, we can compute the n x n

distance matrix Dij

 Evolution of these genes is described by a

tree that we don’t know.

 We need an algorithm to construct a tree that

best fits the distance matrix Dij

Fitting Distance Matrix

 Fitting means Dij = dij(T)

Lengths of path in an (unknown) tree T

Edit distance between species (known)

Reconstructing a 3 Leaved Tree

 Tree reconstruction for any 3x3 matrix is
straightforward

 We have 3 leaves i, j, k and a center vertex c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk

Unknown c (root) -> Steiner Tree Problem

Reconstructing a 3 Leaved Tree (cont’d)

 dic + djc = Dij

 + dic + dkc = Dik

 2dic + djc + dkc = Dij + Dik

 2dic + Djk = Dij + Dik

 dic = (Dij + Dik – Djk)/2
 Similarly,

 djc = (Dij + Djk – Dik)/2

 dkc = (Dki + Dkj – Dij)/2

Trees with > 3 Leaves

 An tree with n leaves has 2n-3 edges

 This means fitting a given tree to a distance

matrix D requires solving a system of “n

choose 2” equations with 2n-3 variables

 This is not always possible to solve optimally

for n > 3

Additive Distance Matrices

Matrix D is

ADDITIVE if there

exists a tree T with

dij(T) = Dij

NON-ADDITIVE

otherwise

Distance Based Phylogeny Problem

 Goal: Reconstruct an evolutionary tree from a

distance matrix

 Input: n x n distance matrix Dij

 Output: weighted tree T with n leaves fitting D

 If D is additive, this problem has a solution

and there is a simple algorithm to solve it

Using Neighboring Leaves to Construct the Tree

 Find neighboring leaves i and j with parent k

 Remove the rows and columns of i and j

 Add a new row and column corresponding to k,
where the distance from k to any other leaf m can
be computed as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into

k, iterate algorithm for

rest of tree

Finding Neighboring Leaves

• To find neighboring leaves we simply select a

pair of closest leaves.

Finding Neighboring Leaves

• To find neighboring leaves we simply select a

pair of closest leaves.

 WRONG

Finding Neighboring Leaves

• Closest leaves aren’t necessarily neighbors

• i and j are neighbors, but (dij = 13) > (djk = 12)

• Finding a pair of neighboring leaves is

 a nontrivial problem!

Neighbor Joining Algorithm

 In 1987 Naruya Saitou and Masatoshi Nei
developed a neighbor joining algorithm for
phylogenetic tree reconstruction

 Finds a pair of leaves that are close to each
other but far from other leaves: implicitly finds a
pair of neighboring leaves

 Advantages: works well for additive and other non-
additive matrices, it does not have the flawed
molecular clock assumption

Degenerate Triples

 A degenerate triple is a set of three distinct

elements 1≤i,j,k≤n where Dij + Djk = Dik

 Element j in a degenerate triple i,j,k lies on the

evolutionary path from i to k (or is attached to

this path by an edge of length 0).

Looking for Degenerate Triples

 If distance matrix D has a degenerate triple
i,j,k then j can be “removed” from D thus
reducing the size of the problem.

 If distance matrix D does not have a
degenerate triple i,j,k, one can “create” a
degenerate triple in D by shortening all
hanging edges (in the tree).

Shortening Hanging Edges to Produce

Degenerate Triples

 Shorten all “hanging” edges (edges that

connect leaves) until a degenerate triple is

found

Finding Degenerate Triples

 If there is no degenerate triple, all hanging edges

are reduced by the same amount δ, so that all pair-

wise distances in the matrix are reduced by 2δ.

 Eventually this process collapses one of the leaves

(when δ = length of shortest hanging edge), forming

a degenerate triple i,j,k and reducing the size of the

distance matrix D.

 The attachment point for j can be recovered in the

reverse transformations by saving Dij for each

collapsed leaf.

Reconstructing Trees for Additive Distance Matrices

AdditivePhylogeny Algorithm

1. AdditivePhylogeny(D)

2. if D is a 2 x 2 matrix

3. T = tree of a single edge of length D1,2

4. return T

5. if D is non-degenerate

6. δ = trimming parameter of matrix D

7. for all 1 ≤ i ≠ j ≤ n

8. Dij = Dij - 2δ

9. else

10. δ = 0

AdditivePhylogeny (cont’d)

1. Find a triple i, j, k in D such that Dij + Djk = Dik

2. x = Dij

3. Remove jth row and jth column from D
4. T = AdditivePhylogeny(D)
5. Add a new vertex v to T at distance x from i to k
6. Add j back to T by creating an edge (v,j) of length 0
7. for every leaf l in T
8. if distance from l to v in the tree ≠ Dl,j

9. output “matrix is not additive”
10. return
11. Extend all “hanging” edges by length δ
12. return T

The Four Point Condition

 AdditivePhylogeny provides a way to check if

distance matrix D is additive

 An even more efficient additivity check is

the “four-point condition”

 Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a

tree

The Four Point Condition (cont’d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3

2 and 3 represent

the same

number: the

length of all

edges + the

middle edge (it is

counted twice)

1 represents a

smaller

number: the

length of all

edges – the

middle edge

The Four Point Condition: Theorem

 The four point condition for the quartet i,j,k,l

is satisfied if two of these sums are the same,

with the third sum smaller than these first two

 Theorem : An n x n matrix D is additive if and

only if the four point condition holds for every

quartet 1 ≤ i,j,k,l ≤ n

Least Squares Distance Phylogeny

Problem

 If the distance matrix D is NOT additive, then we look for a
tree T that approximates D the best:

 Squared Error : ∑i,j (dij(T) – Dij)
2

 Squared Error is a measure of the quality of the fit between
distance matrix and the tree: we want to minimize it.

 Least Squares Distance Phylogeny Problem: finding the
best approximation tree T for a non-additive matrix D (NP-
hard).

UPGMA: Unweighted Pair Group

Method with Arithmetic Mean

 UPGMA is a clustering algorithm that:

 computes the distance between clusters

using average pairwise distance

 assigns a height to every vertex in the tree,

effectively assuming the presence of a

molecular clock and dating every vertex

UPGMA’s Weakness

 The algorithm produces an ultrametric tree :

the distance from the root to any leaf is the

same

 UPGMA assumes a constant molecular

clock: all species represented by the

leaves in the tree are assumed to

accumulate mutations (and thus evolve)

at the same rate. This is a major pitfalls

of UPGMA.

UPGMA’s Weakness: Example

2

3

4

1
1 4 3 2

Correct tree
UPGMA

Clustering in UPGMA

Given two disjoint clusters Ci, Cj of sequences,

 1

 dij = ––––––––– {p Ci, q Cj}dpq

 |Ci| |Cj|

Note that if Ck = Ci Cj, then distance to
another cluster Cl is:

 dil |Ci| + djl |Cj|

 dkl = ––––––––––––––

 |Ci| + |Cj|

UPGMA Algorithm

Initialization:

 Assign each xi to its own cluster Ci

 Define one leaf per sequence, each at height 0

Iteration:

 Find two clusters Ci and Cj such that dij is min

 Let Ck = Ci Cj

 Add a vertex connecting Ci, Cj and place it at height dij /2

 Delete Ci and Cj

Termination:

 When a single cluster remains

UPGMA Algorithm (cont’d)

1 4

3
2 5

1 4 2 3 5

Alignment Matrix vs. Distance Matrix

 Sequence a gene of length m

nucleotides in n species to generate an…

 n x m alignment matrix

n x n distance

matrix

CANNOT be

transformed back

into alignment

matrix because

information was

lost on the forward

transformation

Transform

into…

Character-Based Tree Reconstruction

 Better technique:

 Character-based reconstruction algorithms

use the n x m alignment matrix

 (n = # species, m = #characters)

 directly instead of using distance matrix.

 GOAL: determine what character strings at

internal nodes would best explain the character

strings for the n observed species

Character-Based Tree Reconstruction (cont’d)

 Characters may be nucleotides, where A, G,

C, T are states of this character.

 By setting the length of an edge in the tree to

the Hamming distance, we may define the

parsimony score of the tree as the sum of

the lengths (weights) of the edges

Parsimony Approach to Evolutionary Tree

Reconstruction

 Applies Occam’s razor principle to identify the

simplest explanation for the data

 Assumes observed character differences

resulted from the fewest possible mutations

 Seeks the tree that yields lowest possible

parsimony score - sum of cost of all

mutations found in the tree

Parsimony and Tree Reconstruction

Small Parsimony Problem

 Input: Tree T with each leaf labeled by an m-character
string.

 Output: Labeling of internal vertices of the tree T
minimizing the parsimony score.

 Because the characters in the string are independent,

the Small Parsimony problem can be solved

independently for each character. Therefore, to devise

an algorithm, we can assume that every leaf is labeled

by a single character rather than by a string of m

characters.

Weighted Small Parsimony Problem

 A more general version of Small Parsimony
Problem

 Input includes a k * k scoring matrix describing
the cost of transformation of each of k states
into another one

 For Small Parsimony problem, the scoring
matrix is based on Hamming distance

 dH(v, w) = 0 if v=w

 dH(v, w) = 1 otherwise

Scoring Matrices

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem

Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

Small Parsimony Score: 5

Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Weighted Parsimony Score: 22

Weighted Small Parsimony Problem:

Formulation

 Input: Tree T with each leaf labeled by

elements of a k-letter alphabet and a k x k

scoring matrix (ij)

 Output: Labeling of internal vertices of the

tree T minimizing the weighted parsimony

score

Sankoff Algorithm: Dynamic

Programming

 Calculate and keep track of a score for every

possible label at each vertex

 st(v) = minimum parsimony score of the subtree

rooted at vertex v if v has character t

 The score at each vertex is based on scores

of its children:

 st(parent) = mini {si(left child) + i, t} +

 minj {sj(right child) + j, t}

Sankoff Algorithm (cont.)

 Begin at leaves:

 If leaf has the character in question, score is 0

 Else, score is

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} +

minj{sj(w) + j, t}

sA(v) = mini{si(u) + i, A}

+ minj{sj(w) + j, A}

si(u

)
i, A

su

m

A 0 0 0

T 3

G 4

C 9

si(u

)
i, A

su

m

A 0 0 0

T 3

G 4

C 9

sA(v) = 0

si(u

)
i, A

su

m

A

T

G

C

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} +

minj{sj(w) + j, t}

sA(v) = mini{si(u) + i, A}

+ minj{sj(w) + j, A}

sj(u

)
j, A

su

m

A

T

G

C

sj(u

)
j, A

su

m

A 0

T 3

G 4

C 0 9 9

sj(u

)
j, A

su

m

A 0

T 3

G 4

C 0 9 9

+ 9 = 9

sA(v) = 0

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} +

minj{sj(w) + j, t}

Repeat for T, G, and C

Sankoff Algorithm (cont.)

Repeat for right subtree

Sankoff Algorithm (cont.)

Repeat for root

Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted

parsimony score In this case, 9 –

so label with T

Sankoff Algorithm: Traveling down the

Tree

 The scores at the root vertex have been

computed by going up the tree

 After the scores at root vertex are computed

the Sankoff algorithm moves down the tree

and assign each vertex with optimal

character.

Sankoff Algorithm (cont.)

9 is derived from 7 + 2

So left child is T,

And right child is T

Sankoff Algorithm (cont.)

And the tree is thus labeled…

FITCH’S ALGORITHM

Fitch’s Algorithm

 Solves Small Parsimony problem

 Dynamic programming in essence

 Assigns a set of letter to every vertex in the

tree.

 If the two children’s sets of character overlap,

it’s the common set of them

 If not, it’s the combined set of them.

Fitch’s Algorithm (cont’d)

a

a

a

a

a

a

c

c

 {t,a}

c

t

t

t

 {t,a}

 a

 {a,c}

 {a,c}
a

a

 a

 a

a

 t c

An example:

Fitch Algorithm

1) Assign a set of possible letters to every

vertex, traversing the tree from leaves to root

 Each node’s set is the combination of its

children’s sets (leaves contain their label)

 E.g. if the node we are looking at has a left child

labeled {A, C} and a right child labeled {A, T}, the

node will be given the set {A, C, T}

Fitch Algorithm (cont.)

2) Assign labels to each vertex, traversing the

tree from root to leaves

 Assign root arbitrarily from its set of letters

 For all other vertices, if its parent’s label is in

its set of letters, assign it its parent’s label

 Else, choose an arbitrary letter from its set as

its label

Fitch Algorithm (cont.)

Fitch vs. Sankoff

 Both have an O(nk) runtime

 Are they actually different?

 Let’s compare …

Fitch

As seen previously:

Comparison of Fitch and Sankoff

 As seen earlier, the scoring matrix for the Fitch
algorithm is merely:

 So let’s do the same problem using Sankoff
algorithm and this scoring matrix

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

Sankoff

Sankoff vs. Fitch

 The Sankoff algorithm gives the same set of
optimal labels as the Fitch algorithm

 For Sankoff algorithm, character t is optimal for
vertex v if st(v) = min1<i<ksi(v)
 Denote the set of optimal letters at vertex v as S(v)

 If S(left child) and S(right child) overlap, S(parent) is the
intersection

 Else it’s the union of S(left child) and S(right child)

 This is also the Fitch recurrence

 The two algorithms are identical

Large Parsimony Problem

 Input: An n x m matrix M describing n
species, each represented by an m-character
string

 Output: A tree T with n leaves labeled by the
n rows of matrix M, and a labeling of the
internal vertices such that the parsimony
score is minimized over all possible trees and
all possible labelings of internal vertices

Large Parsimony Problem (cont.)

 Possible search space is huge, especially as

n increases

 (2n – 3)!! possible rooted trees

 (2n – 5)!! possible unrooted trees

 Problem is NP-complete

 Exhaustive search only possible w/ small n(< 10)

 Hence, branch and bound or heuristics used

Nearest Neighbor Interchange
A Greedy Algorithm

 A Branch Swapping algorithm

 Only evaluates a subset of all possible trees

 Defines a neighbor of a tree as one

reachable by a nearest neighbor interchange

 A rearrangement of the four subtrees defined by

one internal edge

 Only three different rearrangements per edge

Nearest Neighbor Interchange (cont.)

Nearest Neighbor Interchange (cont.)

 Start with an arbitrary tree and check its

neighbors

 Move to a neighbor if it provides the best

improvement in parsimony score

 No way of knowing if the result is the most

parsimonious tree

 Could be stuck in local optimum

Nearest Neighbor Interchange

Subtree Pruning and Regrafting
Another Branch Swapping Algorithm

http://artedi.ebc.uu.se/course/BioInfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif

Tree Bisection and Reconnection Another

Branch Swapping Algorithm

Most extensive

swapping routine

