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Farly Evolutionary Studies

Anatomical features were the dominant
criteria used to derive evolutionary

relationships between species since Darwin
till early 1960s

The evolutionary relationships derived from
these relatively subjective observations were
often inconclusive. Some of them were later
proved incorrect



Evolution and DNA Analysis:
the Giant Panda Riddle

For roughly 100 years scientists were unable to
figure out which family the giant panda belongs to

Giant pandas look like bears but have features that
are unusual for bears and typical for raccoons, e.g.,
they do not hibernate

In 1985, Steven O’Brien and colleagues solved the
giant panda classification problem using DNA
sequences and algorithms



Evolutionary Tree of Bears and Raccoons
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Evolutionary Trees: DNA-based Approach

40 years ago: Emile Zuckerkand| and Linus
Pauling brought reconstructing evolutionary
relationships with DNA into the spotlight

In the first few years after Zuckerkandl| and
Pauling proposed using DNA for evolutionary
studies, the possibility of reconstructing
evolutionary trees by DNA analysis

Now it is a dominant approach to study
evolution.



Who are closer?

Does genetics show that humans and chimps
are each other’s closest relative?




Out of Africa Hypothesis

Around the time the giant panda riddle was
solved, a DNA-based reconstruction of the
human evolutionary tree led to the Out of

Africa Hypothesis that claims our
common ancestor lived in Africa roughly
200,000 years ago



‘ Human Evolutionary Tree (contd)
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The evolutionary
tree separates one
group of Africans
from a group
containing all five
populations.

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)



Neighbor joining
tree for 14 human
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Evolutionary Trees

How are these trees built from DNA sequences?



Evolutionary Trees

How are these trees built from DNA sequences?
0 leaves represent existing species
o Internal vertices represent ancestors

0 root represents the oldest evolutionary
ancestor



Rooted and Unrooted Trees

In the unrooted tree the position of
the root (“oldest ancestor”) is
unknown. Otherwise, they are like
rooted trees

(a) Unrooted tree (b} Rooted tree icy The  same
rooted tree



Distances in Trees

Edges may have weights reflecting:

o Number of mutations on evolutionary path from
one species to another

o Time estimate for evolution of one species into
another

In a tree T, we often compute
d;(T) - the length of a path between leaves / and j

d;(T) — tree distance between i and j



‘ Distance in Trees: an Exampe
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Distance Matrix

Given n species, we can compute the n x n
distance matrix D;

D; may be defined as the edit distance between
a gene in species j and species j, where the
gene of interest is sequenced for all n species.

D; — edit distance between i and j



Edit Distance vs. Tree Distance

Given n species, we can compute the n x n
distance matrix D;

D; may be defined as the edit distance between
a gene in species j and species j, where the
gene of interest is sequenced for all n species.

D; — edit distance between i and j
Note the difference with

d,(T) — tree distance between i and j



Fitting Distance Matrix

Given n species, we can compute the n x n
distance matrix D;

Evolution of these genes is described by a
tree that we don’t know.

We need an algorithm to construct a tree that
best fits the distance matrix D;



Fitting Distance Matrix

Lengths of path in an (unknown) tree T

f_j%
Fitting means D; = di(T)

H_J

Edit distance between species (known)



Reconstructing a 3 Leaved Tree

Tree reconstruction for any 3x3 matrix is
straightforward

We have 3 leaves J, j, k and a center vertex ¢

k=== D:..ﬂ' -——-—d

p ¢ Observe:
dic + aj/c - D/’j
,‘ > dic + ye = Dy
l",,' fli.f.':c' f"r
R / a}c 7 dkc = Djk

Unknown c (root) -> Steiner Tree Problem



Reconstructing a 3 Leaved Tree (contd)

ds + dj, = D,
*t i * i = Dy
2di + di + dy. = D; + Dy

\ J

v

/ Similarly,
dy. = (Dy; + Dy — Dy)/2




Trees with > 3 Leaves

An tree with n leaves has 2n-3 edges

This means fitting a given tree to a distance
matrix D requires solving a system of “n
choose 27 equations with 2n-3 variables

This is not always possible to solve optimally
forn>3



Additive Distance Matrices

Matrix D iIs |:> A B C D
ADDITIVE if there 5|z o i
exists a tree T with ©l+ + 2 ©
d//(T) = Dij

/A B C D
NON-ADDITIVE E g i i % 5
otherwise mm=)» vo/2 220



Distance Based Phylogeny Problem

Goal: Reconstruct an evolutionary tree from a
distance matrix

Input: n x n distance matrix D;
Output: weighted tree T with n leaves fitting D

If D is additive, this problem has a solution
and there is a simple algorithm to solve it



Using Neighboring Leaves to Construct the Tree

Find neighboring leaves | and j with parent k
Remove the rows and columns of / and j

Add a new row and column corresponding to K,
where the distance from k to any other leaf m can

be computed as: %
)/2 —/
a.J |
w 7 Compress:andj into
. K, iterate algorithm for

rest of tree

Dim = (D + l)jm




Finding Neighboring [Leaves

To find neighboring leaves we simply select a
pair of closest leaves.



‘ Finding Neighboring [Leaves

» To find neighboring leaves we simply select a
pair of closest leaves.

WRONG




Finding Neighboring [Leaves

Closest leaves aren’t necessarily neighbors
i and j are neighbors, but (d;;= 13) (dy = 12)

®

/1 6
\ 4 O/

: N
@/Q @
Finding a pair of neighboring leaves is
a nontrivial problem!




Neighbor Joining Algorithm

In 1987 Naruya Saitou and Masatoshi Nei
developed a neighbor joining algorithm for
phylogenetic tree reconstruction

Finds a pair of leaves that are close to each
other but far from other leaves: implicitly finds a
pair of neighboring leaves

Advantages: works well for additive and other non-
additive matrices, it does not have the flawed
molecular clock assumption



Degenerate Triples

A degenerate triple is a set of three distinct
elements 71=ij,k=n where D; + D, = D,

Element j in a degenerate triple /,j,k lies on the
evolutionary path from i/ to k (or is attached to
this path by an edge of length 0).



Looking tor Degenerate Triples

If distance matrix D has a degenerate triple
IJ,k then j can be “removed” from D thus
reducing the size of the problem.

If distance matrix D does not have a
degenerate triple i,j,k, one can “create” a
degenerate triple in D by shortening all
hanging edges (in the tree).



Shortening Hanging Edges to Produce
Degenerate Triples

Shorten all "hanging” edges (edges that
connect leaves) until a degenerate triple is

found
T TA B C D
_ A 0 4 1o 9 1 )
B 4 0 8 7
: C 10 8 o0 9 a @
[ 79




Finding Degenerate Triples

If there is no degenerate triple, all hanging edges
are reduced by the same amount 0, so that all pair-
wise distances in the matrix are reduced by 20.

Eventually this process collapses one of the leaves
(when 0 = length of shortest hanging edge), forming
a degenerate triple i,k and reducing the size of the
distance matrix D.

The attachment point for j can be recovered in the
reverse transformations by saving D; for each
collapsed leaf.



‘ Reconstructing Trees for Additive Distance Matrices
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AddittvePhylogeny Algorithm

AdditivePhylogeny(D)

if Dis a 2x 2 matrix
I = tree of a single edge of length D, ,
return 7

if Dis non-degenerate
o = trimming parameter of matrix D
forall 7 </i#j<n

D; =D, - 25

else

6=0



AdditivePhylogeny (conrd)

Find a triple /, j, kin D such that D, + D, = Dy
x =D,
Remove /% row and /7 column from D
7 = AdditivePhylogeny(D)
Add a new vertex v to 7 at distance x from /to k
Add j back to 7 by creating an edge (v,)) of length 0
for every leaf /in T
if distance from / to v in the tree = D),
output “matrix is not additive”
return
Extend all “hanging” edges by length 6
return /7



The Four Point Condition

AdditivePhylogeny provides a way to check if
distance matrix D is additive

An even more efficient additivity check is
the “four-point condition”

Let 1 <i,,k,/ < n be four distinct leaves in a
tree



The Four Point Condition (conrd)

Compute: 1. D; + Dy, 2. Dy + D, 3. Dy + Dy,

2 and 3 represent

the same 1 represents a
number: the smaller
length of all 0., number: the
edges + the ) length of all
middle edge (it is edges — the

counted twice) middle edge



The Four Point Condition: Theorem

The four point condition for the quartet i,j,k,/
IS satisfied if two of these sums are the same,
with the third sum smaller than these first two

Theorem : An n x n matrix D is additive if and
only if the four point condition holds for every
quartet 1 <ijk/<n



Least Squares Distance Phylogeny
Problem

If the distance matrix D is NOT additive, then we look for a
tree T that approximates D the best:

Squared Error: } ;. (d{(T) - D,)?

Squared Error is a measure of the quality of the fit between
distance matrix and the tree: we want to minimize it.

Least Squares Distance Phylogeny Problem: finding the
best approximation tree T for a non-additive matrix D (NP-
hard).



UPGMA: Unweighted Pair Group
Method with Arithmetic Mean

UPGMA is a clustering algorithm that:

o computes the distance between clusters
using average pairwise distance

0 assigns a height to every vertex in the tree,
effectively assuming the presence of a
molecular clock and dating every vertex



UPGMA’s Weakness

The algorithm produces an ultrametric tree :
the distance from the root to any leaf is the
same

UPGMA assumes a constant molecular
clock: all species represented by the
leaves in the tree are assumed to
accumulate mutations (and thus evolve)
at the same rate. This is a major pitfalls
of UPGMA.



'UPGMA’s Weakness: Example

Correct tree
UPGMA




Clustering in UPGMA

Given two disjoint clusters C, Cj of sequences,
1

dij = Z{p eCi, q eCj}dpq
|Gl x|Cf

Note that if C, = C; v C;, then distance to
another cluster C, is:

dy [C} +d; |G}l

dy =
|Ci| +[C]



UPGMA Algorithm

Initialization:
Assign each x; to its own cluster C,
Define one leaf per sequence, each at height O
Iteration:
Find two clusters C;and C; such that dj is min
Let C, = C; v C;
Add a vertex connecting C;, C;and place it at height d;;/2
Delete C;and C;
Termination:
When a single cluster remains







Alignment Matrix vs. Distance Matrix

Sequence a gene of length m
nucleotides in n species to generate an...

n x m alignment matrix

CANNOT be

transformed back Transform
into alignment _

matrix because v Into...

information was dist
lost on the forward n X naistance

transformation matrix



Character-Based Tree Reconstruction

Better technique:

o Character-based reconstruction algorithms
use the n x m alignment matrix

(n = # species, m = #characters)

directly instead of using distance matrix.

o GOAL: determine what character strings at
iInternal nodes would best explain the character
strings for the n observed species



Character-Based Tree Reconstruction (contd)

Characters may be nucleotides, where A, G,
C, T are states of this character.

By setting the length of an edge in the tree to
the Hamming distance, we may define the
parsimony score of the tree as the sum of
the lengths (weights) of the edges



Parsimony Approach to Evolutionary Tree
Reconstruction

Applies Occam’s razor principle to identify the
simplest explanation for the data

Assumes observed character differences
resulted from the fewest possible mutations

Seeks the tree that yields lowest possible
parsimony score - sum of cost of all
mutations found in the tree



Parsimony and Tree Reconstruction

ACCC ACCC
/N /N
ACCA ACCG ACCA ATCC
7\ /\
ATCG ATCC ATCG ACCG

Less More

Parsimonious Parsimonious
Score: 6 Score: 5



Small Parsimony Problem

Input: Tree T with each leaf labeled by an m-character
string.

Qutput: Labeling of internal vertices of the tree T
minimizing the parsimony score.

Because the characters in the string are independent,
the Small Parsimony problem can be solved
independently for each character. Therefore, to devise
an algorithm, we can assume that every leaf is labeled
by a single character rather than by a string of m
characters.



Weighted Small Parsimony Problem

A more general version of Small Parsimony
Problem

Input includes a k * k scoring matrix describing
the cost of transformation of each of k states
Into another one

For Small Parsimony problem, the scoring
matrix is based on Hamming distance

dy(v, w) =0 if v=w
d.(v, w) = 1 otherwise



Scoring Matrices

Small Parsimony Problem  Weighted Parsimony Problem

AT G|C AT G|C

1
0
1
1

O®|H|>
O h| w|O
AN O|w
hlolN|[~
olh|h|©

1|1
1|1
0|1
110

O |>




Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

A AlT|G|C
A Alol1]1]1

Tl1]0]1]1
T C cl1]1]0/1
y\m cl1l1]11]o0

C GT C  Small Parsimony Score: 5



Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A AlT]clcC

W Alo][3]4]09
Tl3/0]2]4

T C cglal2]o0]4
WW clolalalo

C GT C Weighted Parsimony Score: 22



Weighted Small Parsimony Problem:
Formulation

Input: Tree T with each leaf labeled by
elements of a k-letter alphabet and a k x k

scoring matrix ()

Output: Labeling of internal vertices of the
tree T minimizing the weighted parsimony
score




Sankott Algorithm: Dynamic

Programming

Calculate and keep track of a score for every
possible label at each vertex

0 S(Vv) = minimum parsimony score of the subtree
rooted at vertex v if v has character t

The score at each vertex is based on scores

of its children:

0 S{parent) = min, {s( left child ) + ¢, } +
min; {s( right child) + ¢, ;}



‘Sankoff Algorithm (cont)

= Begin at leaves:
o If leaf has the character in question, score is O
0 Else, score is «
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‘Sankoff Algorithm (cont)

611& T G C s{v) =min; {su) + 0, ;4 +

A0 3 4 9 min.{s{(w) + O

G|4 2 0 4
cloy ¢« 4 o CT—I—T .| |5
- i, A
A T @ ) |
s,(1=0 Al O] O
+min{s(w) + o, 4} . x 1 o | 3
G| » 4
C| w 9
TTel=]=] [E[=T=]0]

A T G C

»
-
[~}
O



‘Sankoff Algorithm (cont)

é 1 A T G C_ s{v) =min; {su) + 0, ;4 +
AlO 3 4 9 :
21 & = 4 mmj{sj(w) + é} N
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‘Sankoff Algorithm (cont.)

5§ | A 'g G C_ s(v) =min; {s(u) + o, § +
210 3 9 nfo(w) + O
*1% ¢ & & mmj{sj(w) é} N
Gl4 2 0 4 _
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Repeat for T, G, and C
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‘Sankoff Algorithm (cont)

Repeat for right subtree
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‘Sankoff Algorithm (cont)

Repeat for root

c
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‘Sankoff Algorithm (cont)

Smallest score at root 1s minimum weighted

parsimony score (W1 ]T] In this case, 9 —
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Sankoft Algorithm: Traveling down the

Tree

The scores at the root vertex have been
computed by going up the tree

After the scores at root vertex are computed
the Sankoff algorithm moves down the tree
and assign each vertex with optimal
character.



‘Sankoff Algorithm (cont.)
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So left child is T, RNCEE AR 2
A TG C
And right child 1s T
O CTIITrT)

A T @

(TTe]e]=] [w [ oo 0]

b
-
(2]
L =]
>
-
(=]
L]
> |8
-1



‘Sankoff Algorithm (cont)

And the tree 1s thus labeled...
T

=
O




FITCH’S ALGORITHM




Fitch’s Algorithm

Solves Small Parsimony problem
Dynamic programming in essence

Assigns a set of letter to every vertex in the
tree.

If the two children’s sets of character overlap,
it's the common set of them

If not, it's the combined set of them.



Fitch’s Algorithm onca
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Fitch Algorithm

1) Assign a set of possible letters to every
vertex, traversing the tree from leaves to root

Each node’s set is the combination of its
children’s sets (leaves contain their label)

o E.g. if the node we are looking at has a left child
labeled {A, C} and a right child labeled {A, T}, the
node will be given the set {A, C, T}



Fitch Algorithm (cont.)

2) Assign labels to each vertex, traversing the
tree from root to leaves

Assign root arbitrarily from its set of letters

For all other vertices, if its parent’s label is in
its set of letters, assign it its parent’s label

Else, choose an arbitrary letter from its set as
its label



Fitch Algorithm (cont.)



Fitch vs. Sankoff

Both have an O(nk) runtime

Are they actually different?

Let’'s compare ...



Fitch

As seen previously:

{A, C, G}

> A {G}

A G G} {G] A G G {G]



Comparison of Fitch and Sankott

As seen earlier, the scoring matrix for the Fitch
algorithm is merely:

Q4| >

A
0
1
1
1

T
1
0
1
1

G|C
111
111
0|1
110

C

So let's do the same problem using Sankoff
algorithm and this scoring matrix



‘ Sankoff




Sankoftf vs. Fitch

The Sankoff algorithm gives the same set of
optimal labels as the Fitch algorithm

For Sankoff algorithm, character t is optimal for
vertex v if s(v) = min, ., S(V)
o Denote the set of optimal letters at vertex v as S(v)

If S(/eft child) and S(right child) overlap, S(parent) is the
iIntersection

Else it's the union of S(left child) and S(right child)
This is also the Fitch recurrence

The two algorithms are identical



Large Parsimony Problem

Input: An n x m matrix M describing n
species, each represented by an m-character

string

OQutput: A tree T with n leaves labeled by the
n rows of matrix M, and a labeling of the
internal vertices such that the parsimony
score is minimized over all possible trees and
all possible labelings of internal vertices




Large Parsimony Problem (cont.)

Possible search space is huge, especially as
n increases

0 (2n — 3)!! possible rooted trees
0 (2n — 5)!! possible unrooted trees

Problem is NP-complete
o Exhaustive search only possible w/ small n(< 10)

Hence, branch and bound or heuristics used



Nearest Neighbor Interchange
A Greedy Algorithm

A Branch Swapping algorithm

Only evaluates a subset of all possible trees

Defines a neighbor of a tree as one
reachable by a nearest neighbor interchange

o A rearrangement of the four subtrees defined by
one internal edge

2 Only three different rearrangements per edge



Nearest Neighbor Interchange (cont.)
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Nearest Neighbor Interchange (cont.)

Start with an arbitrary tree and check its
neighbors

Move to a neighbor if it provides the best
Improvement in parsimony score

No way of knowing if the result is the most
parsimonious tree

Could be stuck in local optimum



‘ Nearest Neighbor Interchange




‘ Subtree Pruning and Regrafting
Another Branch Swapping Algorithm

E

7
B \./<G.d'

http://artedi.ebc.uu.se/course/Biolnfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif



Tree Bisection and Reconnection Another
Branch Swapping Algorithm

*Most extensive
swapping routine



