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Early Evolutionary Studies 

 Anatomical features were the dominant 
criteria used to derive evolutionary 
relationships between species since Darwin 
till early 1960s 

 

 The evolutionary relationships derived from 
these relatively subjective observations were 
often inconclusive. Some of them were later 
proved incorrect 



Evolution and DNA Analysis:  

the Giant Panda Riddle 

 For roughly 100 years scientists were unable to 
figure out which family the giant panda belongs to 

 

 Giant pandas look like bears but have features that 
are unusual for bears and typical for raccoons, e.g., 
they do not hibernate 

 

 In 1985, Steven O’Brien and colleagues solved the 
giant panda classification problem using DNA 
sequences and algorithms 

 



Evolutionary Tree of Bears and Raccoons 



Evolutionary Trees: DNA-based Approach 

 40 years ago: Emile Zuckerkandl and Linus 
Pauling brought reconstructing evolutionary 
relationships with DNA into the spotlight  

 In the first few years after Zuckerkandl and 
Pauling proposed using DNA for evolutionary 
studies, the possibility of reconstructing 
evolutionary trees by DNA analysis 

 Now it is a dominant approach to study 
evolution.  

 



Who are closer?  



Out of Africa Hypothesis 

 Around the time the giant panda riddle was 

solved, a DNA-based reconstruction of the 

human evolutionary tree led to the Out of 

Africa Hypothesis that claims our 

common ancestor lived in Africa roughly 

200,000 years ago 



Human Evolutionary Tree (cont’d) 

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm 



Evolutionary Tree of Humans (mtDNA) 

 

  

 The evolutionary  

tree separates one 

group of Africans 

from a group 

containing all five 

populations. 

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991) 



Evolutionary Tree of Humans:  (microsatellites) 

•  Neighbor joining 

tree for 14 human 

populations 

genotyped with 30 

microsatellite loci. 

 
 



Evolutionary Trees 

How are these trees built from DNA sequences? 

 



Evolutionary Trees 

How are these trees built from DNA sequences? 

 leaves represent existing species 

 internal vertices represent ancestors 

 root represents the oldest evolutionary 

ancestor 



Rooted and Unrooted Trees 

In the unrooted tree the position of 

the root (“oldest ancestor”) is 

unknown. Otherwise, they are like 

rooted trees 

 



Distances in Trees 

 Edges may have weights reflecting: 

 Number of mutations on evolutionary path from 

one species to another 

 Time estimate for evolution of one species into 

another 

 In a tree T, we often compute  

  dij(T) - the length of a path between leaves i and j  

 

        dij(T) – tree distance between i and j  

 



Distance in Trees: an Exampe 

 

       d1,4 = 12 + 13 + 14 + 17 + 12 = 68 

i 

j 



Distance Matrix 

 Given n species, we can compute the n x n 

distance matrix Dij 

 Dij may be defined as the edit distance between 

a gene in species i and species j, where the 

gene of interest is sequenced for all n species. 

           Dij – edit distance between i and j  



Edit Distance vs. Tree Distance 

 Given n species, we can compute the n x n 

distance matrix Dij 

 Dij may be defined as the edit distance between 

a gene in species i and species j, where the 

gene of interest is sequenced for all n species. 

           Dij – edit distance between i and j  

 Note the difference with  

       dij(T) – tree distance between i and j  

 



Fitting Distance Matrix 

 Given n species, we can compute the n x n 

distance matrix Dij 

 Evolution of these genes is described by a 

tree that we don’t know. 

 We need an algorithm to construct a tree that 

best fits the distance matrix Dij 



Fitting Distance Matrix 

 

 Fitting means Dij = dij(T) 

 

 

 

Lengths of path in an (unknown) tree T 

Edit distance between species (known) 



Reconstructing a 3 Leaved Tree 

 Tree reconstruction for any 3x3 matrix is 
straightforward 

 We have 3 leaves i, j, k and a center vertex c 

Observe: 

dic + djc = Dij 

dic + dkc = Dik 

djc + dkc = Djk 

Unknown c (root) -> Steiner Tree Problem 



Reconstructing a 3 Leaved Tree (cont’d) 

  dic + djc = Dij 

      +  dic + dkc = Dik 

        2dic + djc + dkc = Dij + Dik 

 2dic +    Djk       = Dij + Dik 

 dic = (Dij + Dik – Djk)/2 
 Similarly, 

  djc = (Dij + Djk – Dik)/2 

  dkc = (Dki + Dkj – Dij)/2 



Trees with > 3 Leaves 

 An tree with n leaves has 2n-3 edges 

 

 This means fitting a given tree to a distance 

matrix D requires solving a system of “n 

choose 2” equations with  2n-3 variables 

 

 This is not always possible to solve optimally 

for n > 3 

 



Additive Distance Matrices 

Matrix D is 

ADDITIVE if there 

exists a tree T with 

dij(T) = Dij 

NON-ADDITIVE 

otherwise 



Distance Based Phylogeny Problem 

 Goal: Reconstruct an evolutionary tree from a 

distance matrix 

 Input: n x n distance matrix Dij 

 Output: weighted tree T with n leaves fitting D 

 

 If D is additive, this problem has a solution 

and there is a simple algorithm to solve it 

 



Using Neighboring Leaves to Construct the Tree 

 Find neighboring leaves i and j with parent k 

 Remove the rows and columns of i and j 

 Add a new row and column corresponding to k, 
where the distance from k to any other leaf m can 
be computed as: 

 

Dkm = (Dim + Djm – Dij)/2 

Compress i and j into 

k, iterate algorithm for 

rest of tree 



Finding Neighboring Leaves 

• To find neighboring leaves we simply select a 

pair of closest leaves.  

 

 



Finding Neighboring Leaves 

• To find neighboring leaves we simply select a 

pair of closest leaves.  

 

                         WRONG 

 

 



Finding Neighboring Leaves 

• Closest leaves aren’t necessarily neighbors 

• i and j are neighbors, but (dij = 13) > (djk = 12) 

 

•  Finding a pair of neighboring leaves is  

   a nontrivial problem! 



Neighbor Joining Algorithm 

 In 1987 Naruya Saitou and Masatoshi Nei 
developed a neighbor joining algorithm for 
phylogenetic tree reconstruction 

 

 Finds a pair of leaves that are close to each 
other but far from other leaves: implicitly finds a 
pair of neighboring leaves 

 

 Advantages: works well for additive and other non-
additive matrices, it does not have the flawed 
molecular clock assumption 

 

 



Degenerate Triples 

 A degenerate triple is a set of three distinct 

elements 1≤i,j,k≤n where Dij + Djk = Dik 

 

 Element j in a degenerate triple i,j,k lies on the 

evolutionary path from i to k (or  is  attached to  

this path by an edge of length 0). 

 

 



Looking for Degenerate Triples 

 

 If distance matrix D has a degenerate triple 
i,j,k then j can be “removed” from D thus 
reducing the size of the problem. 

 

 If distance matrix D does not have a 
degenerate triple i,j,k, one can “create” a 
degenerate triple in D by shortening all 
hanging edges (in the tree).   

 



Shortening Hanging Edges to Produce 

Degenerate Triples 

 Shorten all “hanging” edges (edges that 

connect leaves) until a degenerate triple is 

found 



Finding Degenerate Triples 

 If there is no degenerate triple, all hanging edges 

are reduced by the same amount δ, so that all pair-

wise distances in the matrix are reduced by 2δ. 

 Eventually this process collapses one of the leaves 

(when δ = length of shortest hanging edge), forming 

a degenerate triple i,j,k and reducing the size of the 

distance matrix D. 

 The attachment point for j can be recovered in the 

reverse transformations by saving Dij for each 

collapsed leaf. 

 



Reconstructing Trees for Additive Distance Matrices 



AdditivePhylogeny Algorithm 

1. AdditivePhylogeny(D) 

2.    if D is a 2 x 2 matrix 

3.       T = tree of a single edge of length D1,2 

4.       return T 

5.    if D is non-degenerate 

6.       δ = trimming parameter of matrix D 

7.       for all 1 ≤ i ≠ j ≤ n 

8.          Dij = Dij - 2δ 

9.    else 

10.       δ = 0 



AdditivePhylogeny (cont’d) 

1.    Find a triple i, j, k in D such that Dij + Djk = Dik 

2.    x = Dij 

3.    Remove jth row and jth column from D 
4.    T = AdditivePhylogeny(D) 
5.    Add a new vertex v  to T at distance x from i to k 
6.    Add j back to T  by creating an edge (v,j) of length 0 
7.    for every leaf l in T 
8.       if distance from l  to v  in the tree ≠ Dl,j 

9.          output “matrix is not additive” 
10.          return 
11.    Extend all “hanging” edges by length δ 
12.    return T 



The Four Point Condition 

 AdditivePhylogeny provides a way to check if 

distance matrix D is additive 

 

 An even more efficient additivity check is 

the “four-point condition” 

 

 Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a 

tree 

 



The Four Point Condition (cont’d) 

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk 

1 

2 3 

2 and 3 represent 

the same 

number: the 

length of all 

edges + the 

middle edge (it is 

counted twice) 

1 represents a 

smaller 

number: the 

length of all 

edges – the 

middle edge 



The Four Point Condition: Theorem 

 The four point condition for  the quartet i,j,k,l  

is satisfied if two of these sums are the same, 

with the third sum smaller than these first two 

 

 Theorem : An n x n matrix D is additive if and 

only if the four point condition holds for every 

quartet 1 ≤ i,j,k,l ≤ n 



Least Squares Distance Phylogeny 

Problem 

 

 If the distance matrix D is NOT additive, then we look for a 
tree T that approximates D the best: 

 

               Squared Error :   ∑i,j (dij(T) – Dij)
2 

 

 Squared Error is a measure of the quality of the fit between 
distance matrix and the tree: we want to minimize it. 

 

 Least Squares Distance Phylogeny Problem: finding the 
best approximation tree T for a non-additive matrix D (NP-
hard). 



UPGMA: Unweighted Pair Group 

Method with Arithmetic Mean 

 UPGMA is a clustering algorithm that: 

 computes the distance between clusters 

using average pairwise distance 

 assigns a height to every vertex in the tree, 

effectively assuming the presence of a 

molecular clock and dating every vertex 

 



UPGMA’s Weakness 

 The algorithm produces an ultrametric tree : 

the distance from the root to any leaf is the 

same 

 UPGMA assumes a constant molecular 

clock: all species represented by the 

leaves in the tree are assumed to 

accumulate mutations (and thus evolve) 

at the same rate.  This is a major pitfalls 

of UPGMA. 



UPGMA’s Weakness: Example 

2 

3 

4 

1 
1 4 3 2 

Correct tree 
UPGMA 



Clustering in UPGMA 

Given two disjoint clusters Ci, Cj of sequences, 

                            1 

           dij = ––––––––– {p Ci, q Cj}dpq 

               |Ci|  |Cj| 

 

Note that if Ck = Ci  Cj, then distance to 
another cluster Cl is: 

                        dil |Ci| + djl |Cj| 

                dkl = –––––––––––––– 

                         |Ci| + |Cj| 



UPGMA Algorithm 

Initialization: 

 Assign each xi to its own cluster Ci 

 Define one leaf per sequence, each at height 0 

Iteration: 

 Find two clusters Ci and Cj such that dij is min 

 Let Ck = Ci  Cj 

 Add a vertex connecting Ci, Cj and place it at height dij /2 

 Delete Ci and Cj 

Termination: 

 When a single cluster remains 



UPGMA Algorithm (cont’d) 

1 4 

3 
2 5 

1 4 2 3 5 



Alignment Matrix vs. Distance Matrix 

  Sequence a gene of length m 

nucleotides in n species to generate an… 

     n x m alignment matrix 

n x n distance 

matrix 

CANNOT be 

transformed back 

into alignment 

matrix because 

information was 

lost on the forward 

transformation 

Transform 

into… 



Character-Based Tree Reconstruction  

 Better technique: 

 Character-based reconstruction algorithms 

use the n x m alignment matrix 

   (n = # species, m = #characters)  

   directly instead of using distance matrix.  

 GOAL: determine what character strings at 

internal nodes would best explain the character 

strings for the n observed species 



Character-Based Tree Reconstruction (cont’d) 

 Characters may be nucleotides, where A, G, 

C, T are states of this character.   

 

 By setting the length of an edge in the tree to 

the Hamming distance, we may define the 

parsimony score of the tree as the sum of 

the lengths (weights) of the edges 

 



Parsimony Approach to Evolutionary Tree 

Reconstruction 

 Applies Occam’s razor principle to identify the 

simplest explanation for the data 

 Assumes observed character differences 

resulted from the fewest possible mutations 

 Seeks the tree that yields lowest possible 

parsimony score - sum of cost of all 

mutations found in the tree 



Parsimony and Tree Reconstruction  



Small Parsimony Problem 

 Input: Tree T with each leaf labeled by an m-character 
string. 

 Output: Labeling of internal vertices of the tree T 
minimizing the parsimony score. 

 

 Because the characters in the string are independent, 

the Small Parsimony problem can be solved 

independently for each   character. Therefore, to devise 

an algorithm, we can assume that every leaf is labeled 

by a single character rather than by a string of m 

characters. 

 



Weighted Small Parsimony Problem 

 A more general version of Small Parsimony 
Problem 

 Input includes a k * k scoring matrix describing 
the cost of transformation of each of k states 
into another one  

 For Small Parsimony problem, the scoring 
matrix is based on Hamming distance  

      dH(v, w) = 0 if v=w  

      dH(v, w) = 1 otherwise 

 

 



Scoring Matrices 

A T G C 

A 0 1 1 1 

T 1 0 1 1 

G 1 1 0 1 

C 1 1 1 0 

A T G C 

A 0 3 4 9 

T 3 0 2 4 

G 4 2 0 4 

C 9 4 4 0 

Small Parsimony Problem Weighted Parsimony Problem 



Unweighted vs. Weighted 

Small Parsimony Scoring Matrix: 

A T G C 

A 0 1 1 1 

T 1 0 1 1 

G 1 1 0 1 

C 1 1 1 0 

Small Parsimony Score: 5 



Unweighted vs. Weighted 

Weighted Parsimony Scoring Matrix: 

A T G C 

A 0 3 4 9 

T 3 0 2 4 

G 4 2 0 4 

C 9 4 4 0 

Weighted Parsimony Score: 22 



Weighted Small Parsimony Problem: 

Formulation 

 Input: Tree T with each leaf labeled by 

elements of a k-letter alphabet and a k x k 

scoring matrix (ij) 

 

 Output: Labeling of internal vertices of the 

tree T minimizing the weighted parsimony 

score 



Sankoff Algorithm: Dynamic 

Programming 

 Calculate and keep track of a score for every 

possible label at each vertex 

 st(v) = minimum parsimony score of the subtree 

rooted at vertex v if v has character t 

 The score at each vertex is based on scores 

of its children: 

 st(parent) = mini {si( left child )   + i, t} +  

                      minj   {sj( right child ) + j, t} 



Sankoff Algorithm (cont.) 

 Begin at leaves: 

 If leaf has the character in question, score is 0 

 Else, score is  



Sankoff Algorithm (cont.) 

st(v) = mini {si(u) + i, t} + 

minj{sj(w) + j, t} 

sA(v) = mini{si(u) + i, A} 

+ minj{sj(w) + j, A} 

si(u

) 
i, A 

su

m 

A 0 0 0 

T  3  

G  4  

C  9  

si(u

) 
i, A 

su

m 

A 0 0 0 

T  3  

G  4  

C  9  

sA(v) = 0 

si(u

) 
i, A 

su

m 

A 

T 

G 

C 



Sankoff Algorithm (cont.) 

st(v) = mini {si(u) + i, t} + 

minj{sj(w) + j, t} 

sA(v) = mini{si(u) + i, A} 

+ minj{sj(w) + j, A} 

sj(u

) 
j, A 

su

m 

A 

T 

G 

C 

sj(u

) 
j, A 

su

m 

A  0  

T  3  

G  4  

C 0 9 9 

sj(u

) 
j, A 

su

m 

A  0  

T  3  

G  4  

C 0 9 9 

+ 9 = 9 

sA(v) = 0 



Sankoff Algorithm (cont.) 

st(v) = mini {si(u) + i, t} + 

minj{sj(w) + j, t} 

Repeat for T, G, and C 



Sankoff Algorithm (cont.) 

Repeat for right subtree 



Sankoff Algorithm (cont.) 

Repeat for root 



Sankoff Algorithm (cont.) 

Smallest score at root is minimum weighted 

parsimony score In this case, 9 – 

so label with T 



Sankoff Algorithm: Traveling down the 

Tree 

 The scores at the root vertex have been 

computed by going up the tree  

 After the scores at root vertex are computed 

the Sankoff algorithm moves down the tree 

and assign each vertex with optimal 

character. 



Sankoff Algorithm (cont.) 

9 is derived from 7 + 2 

So left child is T, 

And right child is T 

 



Sankoff Algorithm (cont.) 

And the tree is thus labeled… 



FITCH’S ALGORITHM 



Fitch’s Algorithm 

 Solves Small Parsimony problem 

 Dynamic programming in essence 

 Assigns a set of letter to every vertex in the 

tree. 

 If the two children’s sets of character overlap, 

it’s the common set of them 

 If not, it’s the combined set of them. 



Fitch’s Algorithm (cont’d) 

a 

 

 

a 

 

 

a 

 

 

a 
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c 
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 {t,a} 

c 
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 {t,a} 

 a 

 {a,c} 

 {a,c} 
a 

 

 

a 

 

 a 

 

 a 

 

 

a 

 

 t c 

An example: 



Fitch Algorithm 

1) Assign a set of possible letters to every 

vertex, traversing the tree from leaves to root 

 Each node’s set is the combination of its 

children’s sets (leaves contain their label) 

 E.g. if the node we are looking at has a left child 

labeled {A, C} and a right child labeled {A, T}, the 

node will be given the set {A, C, T} 



Fitch Algorithm (cont.) 

2) Assign labels to each vertex, traversing the 

tree from root to leaves 

 Assign root arbitrarily from its set of letters 

 For all other vertices, if its parent’s label is in 

its set of letters, assign it its parent’s label 

 Else, choose an arbitrary letter from its set as 

its label 



Fitch Algorithm (cont.) 



Fitch vs. Sankoff 

 Both have an O(nk) runtime 

 

 Are they actually different? 

 

 Let’s compare … 



Fitch 

As seen previously: 



Comparison of Fitch and Sankoff 

 As seen earlier, the scoring matrix for the Fitch 
algorithm is merely: 

 

 

 

 

 

 So let’s do the same problem using Sankoff 
algorithm and this scoring matrix 

A T G C 

A 0 1 1 1 

T 1 0 1 1 

G 1 1 0 1 

C 1 1 1 0 



Sankoff 



Sankoff vs. Fitch 

 The Sankoff algorithm gives the same set of 
optimal labels as the Fitch algorithm 

 For Sankoff algorithm, character t is optimal for 
vertex v if st(v) = min1<i<ksi(v) 
 Denote the set of optimal letters at vertex  v as S(v) 

 If S(left child) and S(right child) overlap, S(parent) is the 
intersection 

 Else it’s the union of S(left child) and S(right child)  

 This is also the Fitch recurrence 

 The two algorithms are identical 



Large Parsimony Problem 

 Input: An n x m matrix M describing n 
species, each represented by an m-character 
string 

 Output: A tree T with n leaves labeled by the 
n rows of matrix M, and a labeling of the 
internal vertices such that the parsimony 
score is minimized over all possible trees and 
all possible labelings of internal vertices 



Large Parsimony Problem (cont.) 

 Possible search space is huge, especially as 

n increases 

 (2n – 3)!! possible rooted trees 

 (2n – 5)!! possible unrooted trees 

 Problem is NP-complete 

 Exhaustive search only possible w/ small n(< 10) 

 Hence, branch and bound or heuristics used 



Nearest Neighbor Interchange 
A Greedy Algorithm 

 A Branch Swapping algorithm 

 Only evaluates a subset of all possible trees 

 Defines a neighbor of a tree as one 

reachable by a nearest neighbor interchange 

 A rearrangement of the four subtrees defined by 

one internal edge 

 Only three different rearrangements per edge 



Nearest Neighbor Interchange (cont.) 



Nearest Neighbor Interchange (cont.) 

 Start with an arbitrary tree and check its 

neighbors 

 Move to a neighbor if it provides the best 

improvement in parsimony score 

 No way of knowing if the result is the most 

parsimonious tree 

 Could be stuck in local optimum 



Nearest Neighbor Interchange 



Subtree Pruning and Regrafting 
Another Branch Swapping Algorithm 

http://artedi.ebc.uu.se/course/BioInfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif 



Tree Bisection and Reconnection Another 

Branch Swapping Algorithm 

Most extensive 

swapping routine 


