CS481: Bioinformatics Algorithms

> Can Alkan EA224 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

CLUSTERING USING GRAPHS

Clique Graphs

- A clique is a graph with every vertex connected to every other vertex
- A clique graph is a graph where each connected component is a clique

Transforming an Arbitrary Graph into a Clique Graphs

 A graph can be transformed into a clique graph by adding or removing edges

Corrupted Cliques Problem

Input: A graph G

Output: The smallest number of additions and removals of edges that will transform *G* into a clique graph

Distance Graphs

- Turn the distance matrix into a distance graph
 - Genes are represented as vertices in the graph
 - Choose a distance threshold θ
 - If the distance between two vertices is below θ, draw an edge between them
 - The resulting graph may contain cliques
 - These cliques represent clusters of closely located data points

Transforming Distance Graph into Clique Graph

The distance graph (threshold θ =7) is transformed into a clique graph after removing the two highlighted edges

 $g_4 = g_5$ g_6 g_7 g_8 gg g10 7.7 9.3 2.3 5.1 10.2 6.1 7.0 9.2 g_1 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0 q_2 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5 q_3 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1 g_4 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6 q_5 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5 $g_{\rm B}$ 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3 g_7 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4 q_8 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1 q_{2} 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0 q_{10}

(a) Distance matrix, d (distances shorter than 7 are shown in bold). After transforming the distance graph into the clique graph, the dataset is partitioned into three clusters

Figure 10.6 The distance graph (b) for $\theta = 7$ is not quite a clique graph. However, it can be transformed into a clique graph (c) by removing edges (g_1, g_{10}) and (g_1, g_9) .

Heuristics for Corrupted Clique Problem

- Corrupted Cliques problem is NP-Hard, some heuristics exist to approximately solve it:
- CAST (Cluster Affinity Search Technique): a practical and fast algorithm:
 - CAST is based on the notion of genes close to cluster C or distant from cluster C
 - □ Distance between gene *i* and cluster *C*:

d(i, C) = average distance between gene *i* and all genes in C

Gene *i* is *close* to cluster *C* if *d(i,C)< θ* and *distant* otherwise

- 1. <u>CAST(*S*, *G*, *θ*)</u>
- $P \leftarrow \emptyset$
- $3. \qquad \text{while } S \neq \emptyset$
- 4. $V \leftarrow$ vertex of maximal degree in the distance graph G
- 5. $C \leftarrow \{v\}$
- 6. while a close gene *i* not in *C* or distant gene *i* in *C* exists
- Find the nearest close gene *i* not in *C* and add it to *C*Remove the farthest distant gene *i* in *C*
- 9. Add cluster *C* to partition *P*
- 10. $S \leftarrow S \setminus C$
- **11.** Remove vertices of cluster *C* from the distance graph *G*
- 12. return *P*

S – set of elements, G – distance graph, θ – distance threshold

 $\Theta = 7$ $P = \emptyset$ $S = \{g_1, \dots, g_{10}\}$ $degree(g_{10}) = 4$

 $C_1 = \{g_{10}\} \\ C_1 = \{g_2, g_{10}\}$

$$d(g_1, C_1) = (7+8.1) / 2 = 7.55$$

$$d(g_4, C_1) = (0.9+1.1) / 2 = 1$$

$$d(g_9, C_1) = (2+1.1) / 2 = 1.55$$

 $C_1 = \{g_2, g_4, g_{10}\}\ d(g_9, C) = (2+1.6+1) / 3 = 1.53$

 $C_1 = \{g_2, g_4, g_9, g_{10}\}$ P = {C₁}

- $\Theta = 7$ $P = \{C_1\}$ $C_1 = \{g_2, g_4, g_9, g_{10}\}$ $S = \{g_1, g_3, g_5, g_6, g_7, g_8\}$ $degree(g_1) = 2$
- $C_2 = \{g_1\}$ $C_2 = \{g_1, g_6\}$
- $d(g_7, C_2) = (5.1+5.6) / 2 = 5.35$
- $C_2 = \{g_1, g_6, g_7\}$
- $P = \{C_1, C_2\}$

$$\begin{split} \Theta &= 7 \\ \mathsf{P} = \{\mathsf{C}_1, \, \mathsf{C}_2\} \\ \mathsf{C}_1 &= \{\mathsf{g}_2, \, \mathsf{g}_4, \, \mathsf{g}_9, \, \mathsf{g}_{10}\} \\ \mathsf{C}_2 &= \{\mathsf{g}_1, \, \mathsf{g}_6, \, \mathsf{g}_7\} \\ \mathsf{S} &= \{\mathsf{g}_3, \mathsf{g}_5, \, \mathsf{g}_8\} \\ \mathsf{degree}(\mathsf{g}_3) &= 2 \end{split}$$

 $P = \{C_1, C_2, C_3\}$

$$\Theta = 7$$

$$P = \{C_1, C_2, C_3\}$$

$$C_1 = \{g_2, g_4, g_9, g_{10}\}$$

$$C_2 = \{g_1, g_6, g_7\}$$

$$C_3 = \{g_3, g_5, g_8\}$$

$$S = \emptyset$$

... done

GENOME REARRANGEMENTS

Turnip vs Cabbage: Look and Taste Different

 Although cabbages and turnips share a recent common ancestor, they look and taste different

Turnip vs Cabbage: Almost Identical mtDNA gene sequences

- In 1980s Jeffrey Palmer studied evolution of plant organelles by comparing mitochondrial genomes of the cabbage and turnip
- 99% similarity between genes
- These surprisingly identical gene sequences differed in gene order
- This study helped pave the way to analyzing genome rearrangements in molecular evolution

Gene order comparison:

Evolution is manifested as the divergence in gene order

Transforming Cabbage into Turnip

- What are the similarity blocks and how to find them?
- What is the architecture of the ancestral genome?
- What is the evolutionary scenario for transforming one genome into the other?

History of Chromosome X

Rat Consortium, Nature, 2004

Reversals

Blocks represent conserved genes.

Reversals

- Blocks represent conserved genes.
- In the course of evolution or in a clinical context, blocks 1,...,10 could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.

Reversals and Breakpoints

The reversion introduced two *breakpoints* (disruptions in order).

Reversals: Example

Comparative Genomic Architectures: Mouse vs Human Genome

- Humans and mice have similar genomes, but their genes are ordered differently
- ~245 rearrangements
 - Reversals
 - Fusions
 - Fissions
 - Translocation

