
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

GENOME

REARRANGEMENTS

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Similarity blocks

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Before

After

Evolution is manifested as the divergence

in gene order

Transforming Cabbage into Turnip

Types of Rearrangements

Reversal

1 2 3 4 5 6 1 2 -5 -4 -3 6

Translocation
1 2 3

44 5 6

1 2 6

4 5 3

1 2 3 4

5 6
1 2 3 4 5 6

Fusion

Fission

Reversals: Example

 = 1 2 3 4 5 6 7 8

(3,5)

 1 2 5 4 3 6 7 8

Reversals: Example

 = 1 2 3 4 5 6 7 8

(3,5)

 1 2 5 4 3 6 7 8

(5,6)

 1 2 5 4 6 3 7 8

Reversals and Gene Orders

 Gene order is represented by a

permutation

1 ------ i-1 i i+1 ------ j-1 j j+1 ----- n

1 ------ i-1 j j-1 ------ i+1 i j+1 ----- n

 Reversal (i, j) reverses (flips) the

elements from i to j in

(i,j)

Reversal Distance Problem

 Goal: Given two permutations, find the shortest
series of reversals that transforms one into another

 Input: Permutations and

 Output: A series of reversals 1,… t transforming
into such that t is minimum

 t - reversal distance between and

 d(,) - smallest possible value of t, given and

Sorting By Reversals Problem

 Goal: Given a permutation, find a shortest
series of reversals that transforms it into the
identity permutation (1 2 … n)

 Input: Permutation

 Output: A series of reversals 1, … t
transforming into the identity permutation
such that t is minimum

Sorting By Reversals: Example

 t =d() - reversal distance of

 Example :

 = 3 4 2 1 5 6 7 10 9 8

 4 3 2 1 5 6 7 10 9 8

 4 3 2 1 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 So d() = 3

Sorting by reversals: 5 steps

Step 0: 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: 1 2 3 4 5 6 7 8

Sorting by reversals: 4 steps

Step 0: 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: 1 2 3 4 5 6 7 8

Pancake Flipping Problem

 The chef is sloppy; he

prepares an unordered stack

of pancakes of different sizes

 The waiter wants to

rearrange them (so that the

smallest winds up on top,

and so on, down to the

largest at the bottom)

 He does it by flipping over

several from the top,

repeating this as many times

as necessary

Christos Papadimitrou and

Bill Gates flip pancakes

Pancake Flipping Problem: Formulation

 Goal: Given a stack of n pancakes, what is

the minimum number of flips to rearrange

them into perfect stack?

 Input: Permutation

 Output: A series of prefix reversals 1, … t

transforming into the identity permutation

such that t is minimum

Pancake Flipping Problem: Greedy Algorithm

 Greedy approach: 2 prefix reversals at most

to place a pancake in its right position, 2n – 2

steps total at most

 William Gates and Christos Papadimitriou

showed in the mid-1970s that this problem

can be solved by at most 5/3 (n + 1) prefix

reversals

Sorting By Reversals: A Greedy Algorithm

 If sorting permutation = 1 2 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

 The length of the already sorted prefix of is
denoted prefix()

 prefix() = 3

 This results in an idea for a greedy algorithm:
increase prefix() at every step

 Doing so, can be sorted

 1 2 3 6 4 5

 1 2 3 4 6 5

 1 2 3 4 5 6

 Number of steps to sort permutation of
length n is at most (n – 1)

Greedy Algorithm: An Example

Greedy Algorithm: Pseudocode

SimpleReversalSort()

1 for i 1 to n – 1

2 j position of element i in (i.e., j = i)

3 if j ≠i

4 * (i, j)

5 output

6 if is the identity permutation

7 return

Analyzing SimpleReversalSort

 SimpleReversalSort does not guarantee the
smallest number of reversals and takes five
steps on = 6 1 2 3 4 5 :

 Step 1: 1 6 2 3 4 5

 Step 2: 1 2 6 3 4 5

 Step 3: 1 2 3 6 4 5

 Step 4: 1 2 3 4 6 5

 Step 5: 1 2 3 4 5 6

 But it can be sorted in two steps:

 = 6 1 2 3 4 5

 Step 1: 5 4 3 2 1 6

 Step 2: 1 2 3 4 5 6

 So, SimpleReversalSort() is not optimal

 Optimal algorithms are unknown for many

problems; approximation algorithms are used

Analyzing SimpleReversalSort (cont’d)

Approximation Algorithms

 These algorithms find approximate solutions
rather than optimal solutions

 The approximation ratio of an algorithm A on
input is:

 A() / OPT()

where

 A() - solution produced by algorithm A
OPT() - optimal solution of the problem

Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n

 For algorithm A that minimizes objective

function (minimization algorithm):

 max| | = n A() / OPT()

Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n

 For algorithm A that minimizes objective

function (minimization algorithm):

 max| | = n A() / OPT()

 For maximization algorithm:

 min| | = n A() / OPT()

= 2 3… n-1 n

 A pair of elements i and i + 1 are adjacent if

 i+1 = i + 1

 For example:

 = 1 9 3 4 7 8 2 6 5

 (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints

There is a breakpoint between any adjacent
element that are non-consecutive:

 = 1 9 3 4 7 8 2 6 5

 Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form
breakpoints of permutation

 b() - # breakpoints in permutation

Breakpoints

Adjacency & Breakpoints

•An adjacency - a pair of adjacent elements that are consecutive

• A breakpoint - a pair of adjacent elements that are not

consecutive

π = 5 6 2 1 3 4

0 5 6 2 1 3 4 7

adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7

 We put two elements 0 =0 and n + 1=n+1 at

the ends of

Example:

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

 = 1 9 3 4 7 8 2 6 5

 = 0 1 9 3 4 7 8 2 6 5 10

 Each reversal eliminates at most 2 breakpoints.

 = 2 3 1 4 6 5

 0 2 3 1 4 6 5 7 b() = 5

 0 1 3 2 4 6 5 7 b() = 4

 0 1 2 3 4 6 5 7 b() = 2

 0 1 2 3 4 5 6 7 b() = 0

Reversal Distance and Breakpoints

 Each reversal eliminates at most 2 breakpoints.

 This implies:

 reversal distance ≥ #breakpoints / 2

 = 2 3 1 4 6 5

 0 2 3 1 4 6 5 7 b() = 5

 0 1 3 2 4 6 5 7 b() = 4

 0 1 2 3 4 6 5 7 b() = 2

 0 1 2 3 4 5 6 7 b() = 0

Reversal Distance and Breakpoints

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort()

1 while b() > 0

2 Among all possible reversals,
choose reversal minimizing b(•)

3 • (i, j)

4 output

5 return

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort()

1 while b() > 0

2 Among all possible reversals,
choose reversal minimizing b(•)

3 • (i, j)

4 output

5 return

Problem: this algorithm may work forever

Strips

 Strip: an interval between two consecutive
breakpoints in a permutation

 Decreasing strip: strip of elements in
decreasing order (e.g. 6 5 and 3 2).

 Increasing strip: strip of elements in increasing
order (e.g. 7 8)

 0 1 9 4 3 7 8 2 5 6 10

 A single-element strip can be declared either increasing or

decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+1

Reducing the Number of Breakpoints

Theorem 1:

 If permutation contains at least one

decreasing strip, then there exists a

reversal which decreases the number of

breakpoints (i.e. b(•) < b())

Things To Consider

 For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 2 9 b() = 5

 Choose decreasing strip with the smallest

element k in (k = 2 in this case)

Things To Consider (cont’d)

 For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 22 9 b() = 5

 Choose decreasing strip with the smallest

element k in (k = 2 in this case)

Things To Consider (cont’d)

 For = 1 4 6 5 7 8 3 2

 0 11 4 6 5 7 8 3 22 9 b() = 5

 Choose decreasing strip with the smallest

element k in (k = 2 in this case)

 Find k – 1 in the permutation

Things To Consider (cont’d)

 For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 2 9 b() = 5

 Choose decreasing strip with the smallest
element k in (k = 2 in this case)

 Find k – 1 in the permutation

 Reverse the segment between k and k-1:

 0 1 4 6 5 7 8 3 2 9 b() = 5

 0 1 2 3 8 7 5 6 4 9 b() = 4

Reducing the Number of Breakpoints

Again

 If there is no decreasing strip, there may be
no reversal that reduces the number of
breakpoints (i.e. b(•) ≥ b() for any
reversal).

 By reversing an increasing strip (# of
breakpoints stay unchanged), we will create
a decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

Things To Consider (cont’d)

 There are no decreasing strips in , for:

 = 0 1 2 5 6 7 3 4 8 b() = 3

 • (6,7) = 0 1 2 5 6 7 4 3 8 b() = 3

 (6,7) does not change the # of breakpoints

 (6,7) creates a decreasing strip thus
guaranteeing that the next step will decrease
the # of breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort()
1 while b() > 0
2 if has a decreasing strip
3 Among all possible reversals, choose reversal

 that minimizes b(•)

4 else
5 Choose a reversal that flips an increasing strip in

6 •
7 output
8 return

 ImprovedBreakPointReversalSort is an

approximation algorithm with a performance

guarantee of at most 4

 It eliminates at least one breakpoint in every two

steps; at most 2b() steps

 Approximation ratio: 2b() / d()

 Optimal algorithm eliminates at most 2

breakpoints in every step: d() b() / 2

 Performance guarantee:

 (2b() / d()) [2b() / (b() / 2)] = 4

ImprovedBreakpointReversalSort:

Performance Guarantee

GRAPHS

Breakpoint Graph

1) Represent the elements of the permutation π = 2 3 1 4 6 5

as vertices in a graph (ordered along a line)

 0 2 3 1 4 6 5 7

2) Connect vertices in order given by π with black edges (black

path)

3) Connect vertices in order given by 1 2 3 4 5 6 with grey

edges (grey path)

4) Superimpose black and grey paths

Two Equivalent Representations of the

Breakpoint Graph

 0 2 3 1 4 6 5 7

 0 1 2 3 4 5 6 7

• Consider the following Breakpoint Graph

• If we line up the gray path (instead of black path) on a horizontal

line, then we would get the following graph

• Although they may look different, these two graphs are the same

What is the Effect of the Reversal ?

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

• The gray paths stayed the same for both graphs

• There is a change in the graph at this point

• There is another change at this point

How does a reversal change the breakpoint graph?

Before: 0 2 3 1 4 6 5 7

After: 0 2 3 5 6 4 1 7

• The black edges are unaffected by the reversal so they remain the

same for both graphs

A reversal affects 4 edges in the

breakpoint graph

 0 1 2 3 4 5 6 7

• A reversal removes 2 edges (red) and replaces them with

2 new edges (blue)

Effects of Reversals
Case 1:

Both edges belong to the same cycle

• Remove the center black edges and replace them with new

black edges (there are two ways to replace them)

• (a) After this replacement, there now exists 2 cycles instead of 1

cycle

c(πρ) – c(π) = 1

This is called a proper reversal

since there’s a cycle increase

after the reversal.

• (b) Or after this replacement, there still exists 1 cycle

c(πρ) – c(π) = 0
Therefore, after the reversal

c(πρ) – c(π) = 0 or 1

Effects of Reversals (Continued)

Case 2:

Both edges belong to different cycles

• Remove the center black edges and replace them with new black

edges

• After the replacement, there now exists 1 cycle instead of 2 cycles

c(πρ) – c(π) = -1

Therefore, for every

permutation π and reversal

ρ, c(πρ) – c(π) ≤ 1

Identity permutation (n=6)

 0 1 2 3 4 5 6 7

Reversal Distance and Maximum Cycle

Decomposition

• Since the identity permutation of size n contains the maximum cycle

decomposition of n+1, c(identity) = n+1

• c(identity) – c(π) equals the number of cycles that need to be

“added” to c(π) while transforming π into the identity

• Based on the previous theorem, at best after each reversal, the

cycle decomposition could be increased by one, then:

 d(π) = c(identity) – c(π) = n+1 – c(π)

• Yet, not every reversal can increase the cycle decomposition

Therefore, d(π) ≥ n+1 – c(π)

Signed Permutations

 Up to this point, all permutations to sort were

unsigned

 But genes have directions… so we should

consider signed permutations

5’ 3’

= 1 -2 - 3 4 -5

Signed Permutation

• Genes are directed fragments of DNA and we represent a genome

by a signed permutation

• If genes are in the same position but there orientations are

different, they do not have the equivalent gene order

• For example, these two permutations have the same order, but

each gene’s orientation is the reverse; therefore, they are not

equivalent gene sequences

 1 2 3 4 5

 -1 2 -3 -4 -5

From Signed to Unsigned Permutation

 0 +3 -5 +8 -6 +4 -7 +9 +2 +1 +10 -11 12

• Begin by constructing a normal signed breakpoint graph

• Redefine each vertex x with the following rules:

 If vertex x is positive, replace vertex x with vertex 2x-1 and

vertex 2x in that order

 If vertex x is negative, replace vertex x with vertex 2x and

vertex 2x-1 in that order

 The extension vertices x = 0 and x = n+1 are kept as it was

before

 0 3a 3b 5a 5b 8a 8b 6a 6b 4a 4b 7a 7b 9a 9b 2a 2b 1a 1b 10a 10b 11a 11b

23

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

 +3 -5 +8 -6 +4 -7 +9 +2 +1 +10 -11

From Signed to Unsigned Permutation (Continued)

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• Construct the breakpoint graph as usual

• Notice the alternating cycles in the graph between every other

vertex pair

• Since these cycles came from the same signed vertex, we will not

be performing any reversal on both pairs at the same time;

therefore, these cycles can be removed from the graph

Interleaving Edges

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• Interleaving edges are grey edges that cross each other

These 2 grey edges

interleave

Example: Edges (0,1) and (18, 19) are interleaving

• Cycles are interleaving if they have an interleaving

edge

Interleaving Graphs

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• An Interleaving Graph is defined on the set of cycles in the

Breakpoint graph and are connected by edges where cycles are

interleaved

A

B
C

E

F

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

A

B
C

E

F

D

D A B

C

E F

Interleaving Graphs (Continued)

A B

C

D E F

• Oriented cycles are cycles that have the following form

F

C

• Unoriented cycles are cycles that have the following form

• Mark them on the interleave graph

E

• In our example, A, B, D, E are unoriented cycles while C, F

are oriented cycles

Hurdles

• Remove the oriented components from the interleaving graph

A B

C

D E F

• The following is the breakpoint graph with these oriented

components removed

• Hurdles are connected components that do not contain any other

connected components within it

A

B D

E

Hurdle

Reversal Distance with Hurdles

• Hurdles are obstacles in the genome rearrangement problem

• They cause a higher number of required reversals for a

permutation to transform into the identity permutation

• Taking into account of hurdles, the following formula gives a

tighter bound on reversal distance:

d(π) ≥ n+1 – c(π) + h(π)

• Let h(π) be the number of hurdles in permutation π

