CS481: Bioinformatics
Algorithms

Can Alkan
EA224
calkan@cs.bilkent.edu.tr

http://Iwww.cs.bilkent.edu.tr/~calkan/teaching/cs481/

GENOME
REARRANGEMENTS

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

D----3

¢

Similarity blocks

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

B .

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

B 4

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

B .

Turnip vs Cabbage: Different mtDNA Gene Order

= Gene order comparison:

e | G

j <

we | EDEDED

Evolution is manifested as the divergence
in gene order

Transtorming Cabbage into Turnip

B.oleracea 15 4 a3 1
(cabbage) T
TR ’:;{" 72
—] I-i_._.-!_ g '4 ., '3 = _E"_r
i
B. campestris —_— T
(turnip) — ————— . .

Types ot Rearrangements

Reversal
123456 P 12-5-4-36

Translocation

23 — 126
S 6

4 53

Fusion

1234 mmp
123456
5 6 <{—

Fission

Reversals: Example

n=12345678

p(3,5) l

12543678

Reversals: Example

n=12345678

p(3,5) |
12543678
p(5,6) l

12546378

Reversals and Gene Orders

Gene order is represented by a
permutation z:

T =71y N R T — BN R AT p— 7Ty
P(i.j)
43— BN RO p— i1 i 7041 e Tn

Reversal p (1, j) reverses (flips) the
elements fromitojin z

Reversal Distance Problem

Goal: Given two permutations, find the shortest

series of reversals that transforms one into another
Input: Permutations 7and o

Output: A series of reversals p;,...p;transforming =
Into o, such that fis minimum

t - reversal distance between rand o
d(r, o) - smallest possible value of t, given rand o

Sorting By Reversals Problem

Goal: Given a permutation, find a shortest

series of reversals that transforms it into the
identity permutation (72 ... n)

Input: Permutation z

Output: A series of reversals p
transforming zinto the |dent|ty permutatlon
such that f is minimum

Sorting By Reversals: Example

t =d(x) - reversal distance of z
Example :

T =3421567 10 9 8
43215 067 109 8
4321567 8910
1234567 8910

Sod(z) =3

‘ Sorting by reversals: 5 steps

Step 0: =«
Step 1:
Step 2:
Step 3:
Step 4:
Step 5: ¢

2-4-3 5-8-7 -6
2 3 4 5-8-7-6
2 3 45 06 7 8
2 3 45 6 7 8-
8 -7/ -6 -5-4-3 -2 -
12 3 4 5 6 7 8

Step 0: «
Step 1:
Step 2:
Step 3:
Step 4: v

‘ Sorting by reversals: 4 steps

2-4-3 5-8-7-6
2 3 4 5-8-7-6
-5 -4 -3-2-8-7 -6
-5-4-3-2-16 7 8
12 3 4 5 6 7 8

Pancake Flipping Problem

The chef is sloppy; he
prepares an unordered stack
of pancakes of different sizes

The waiter wants to
rearrange them (so that the
smallest winds up on top,
and so on, down to the
largest at the bottom)

He does it by flipping over
several from the top,
repeating this as many times
as necessary

Christos Papadimitrou and
Bill Gates flip pancakes

Pancake Flipping Problem: Formulation

Goal: Given a stack of n pancakes, what is
the minimum number of flips to rearrange
them into perfect stack?

Input: Permutation =

Output: A series of prefix reversals p., ... p;
transforming x into the identity permutation
such that f is minimum

Pancake Flipping Problem: Greedy Algorithm

Greedy approach: 2 prefix reversals at most
to place a pancake in its right position, 2n — 2
steps total at most

William Gates and Christos Papadimitriou
showed in the mid-1970s that this problem
can be solved by at most 5/3 (n + 1) prefix
reversals

Sorting By Reversals: A Greedy Algorithm

If sorting permutation 7=12 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

The length of the already sorted prefix of ris
denoted prefix(r)

o prefix(z) =3
This results in an idea for a greedy algorithm:
increase prefix(x) at every step

Greedy Algorithm: An Example

Doing so, 7 can be sorted

123645

l

123465

l

123456

Number of steps to sort permutation of
length nis at most (n — 1)

Greedy Algorithm: Pseudocode

SimpleReversalSort(z)

1 for i< JTton-17

2 j € position of element /in 7z (i.e., ;=)
3 if j#/

4 w& ™ pli,)
5 output =
6

7/

if 7is the identity permutation
return

Analyzing SimpleReversalSort

SimpleReversalSort does not guarantee the
smallest number of reversals and takes five
stepson 7=612345:

Step1: 162345
Step 2: 126345
Step 3: 123645
Step4: 123465
Step 5: 123456

Analyzing SimpleReversalSort (contd)

But it can be sorted in two steps:
7 =0612345

aStepl: 543216
aStep2: 123456

So, SimpleReversalSort(7) is not optimal

Optimal algorithms are unknown for many
problems; approximation algorithms are used

Approximation Algorithms

These algorithms find approximate solutions
rather than optimal solutions

The approximation ratio of an algorithm A on
input 7 Is:

A(r) / OPT(n)
where

A() - solution produced by algorithm A
OPT(7) - optimal solution of the problem

Approximation Ratio/Performance Guarantee

Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all
inputs of size n

o For algorithm A that minimizes objective
function (minimization algorithm):

max, , - , A(n) / OPT(n)

Approximation Ratio/Performance Guarantee

Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all
inputs of size n

o For algorithm A that minimizes objective
function (minimization algorithm):

o For maximization algorithm:

Adjacencies and Breakpoints

T= T oM. .. T 47T,
A pair of elements r;and r,;, ,are adjacent if
g = 7 * 1
For example:
7=193478265
(3, 4) or (7, 8) and (6,5) are adjacent pairs

Breakpoints

There is a breakpoint between any adjacent
element that are non-consecutive:

7=1|9|3 4|7 8|2(6 5
Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form

breakpoints of permutation =
b(7x) - # breakpoints in permutation 7

Adjacency & Breakpoints

*An adjacency - a pair of adjacent elements that are consecutive

* A breakpoint - a pair of adjacent elements that are not
consecutive

n=562134 > Extend m with ry =0 and n, =7

adjacencies

0 5l6 le 3l4 7
f Pt f

breakpoints

Extending Permutations

We put two elements 7= ,=0and =, , ,=n+1 at
the ends of z

Example:

n=1|9/3 4/7 8/2/6 5

l Extending with 0 and 710

n=011[9(3 4|7 8|2[6 5 10
Note: A new breakpoint was created after extending

Reversal Distance and Breakpoints

Each reversal eliminates at most 2 breakpoints.

7=231465

0l2 3l1l4l6 517 b(n) =5
0113 2l4l6 5|7 b(x) = 4
01234657 b(7) = 2
01234567 b(7) = 0

Reversal Distance and Breakpoints

Each reversal eliminates at most 2 breakpoints.
This implies:

reversal distance = #breakpoints /2
7=2314625

0|2 3|11]4|6 5|7 b(z) =5
0113 2l4l6 5|7 b(x) = 4
01234l65l7 b(7) = 2
01234567 b(z) =0

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(x)
1 while 6(n) > 0O

2 Among all possible reversals,
choose reversal p minimizing bH(z* p)

3 €& 7w pli,))
4 output 7z
5 return

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(x)
1 while 6(n) > 0O

2 Among all possible reversals,
choose reversal p minimizing bH(z* p)

3 €& 7w pli,))
4 output 7z
5 return

Problem: this algorithm may work forever

Strips

Strip: an interval between two consecutive
breakpoints in a permutation

o Decreasing strip: strip of elements in
decreasing order (e.g. 6 5and 3 2).

o Increasing strip: strip of elements in increasing
order (e.g. 7 8)

0194378256170

—> —— « > — —» —>

o A single-element strip can be declared either increasing or

decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+171

Reducing the Number of Breakpoints

Theorem 1:

If permutation z contains at least one
decreasing strip, then there exists a
reversal p which decreases the number of
breakpoints (i.e. b(z* p) < b(x))

Things To Consider

Formr =14657832
0 1l4l6 5|7 83 219 b(x)=5

o Choose decreasing strip with the smallest
element kin 7 (k= 2 in this case)

Things To Considet (contd)

Formr =14657832
0 1l4l6 5|7 83 219 b(x)=5

o Choose decreasing strip with the smallest
element kin 7 (k= 2 in this case)

Things To Considet (contd)

Formr =14657832
0 1l4l6 5|7 83 219 b(x)=5

o Choose decreasing strip with the smallest
element kin 7 (k= 2 in this case)

o Find k— 1 In the permutation

Things To Considet (contd)

Formr =14657832
0 114/6 5|7 83 2|19 b(x)=5

0 Choose decreasing strip with the smallest
element kin 7 (k= 2 in this case)

o Find k— 1 In the permutation
0 Reverse the segment between k and k-17.

gu 0 1l4le 5|7 8|3 29 b(z) = 5

l
101 2387|56|4]9 b(n)=4

Reducing the Number of Breakpoints
Again

o If there Is no decreasing strip, there may be
no reversal p that reduces the number of
breakpoints (i.e. b(zr* p) = b(x) for any
reversal p).

0 By reversing an increasing strip (# of
breakpoints stay unchanged), we will create
a decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

Things To Considet (contd)

There are no decreasing strips in 7, for:

7=012|567|34[|8 b(n)=3
7 p(6,7)=012]56 7|4 3|8 bn)=3

0(6,7) does not change the # of breakpoints

0(6,7) creates a decreasing strip thus
guaranteeing that the next step will decrease
the # of breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(x)
1 while H6(z) > 0
2 if 7 has a decreasing strip
Among all possible reversals, choose reversal p

that minimizes b(x * p)
4 else
5 Choose a reversal p that flips an increasing strip in z
6 T & T p
/ output 7~
8 return

ImprovedBreakpointReversalSort:
Pertormance Guarantee

ImprovedBreakPointReversalSort is an
approximation algorithm with a performance
guarantee of at most 4

o It eliminates at least one breakpoint in every two
steps; at most 2b(x) steps

o Approximation ratio: 2b(xz) / d(x)

o Optimal algorithm eliminates at most 2
breakpoints in every step: d(xz) > b(x) / 2

o Performance guarantee:

(26(m) | dm))=[26(n) | (K(n) | 2)] = 4

GRAPHS

Breakpoint Graph

1)

2)

3)

4)

Represent the elements of the permutationt=231465
as vertices in a graph (ordered along a line)

Connect vertices in order given by & with black edges (black
path)

Connect vertices in order given by 1 2 3 4 5 6 with grey
edges (grey path)

Superimpose black and grey paths

Two

Equivalent Representations of the

Breakpoint Graph

* Consider the following Breakpoint Graph

* If we line up the gray path (instead of black path) on a horizontal
line, then we would get the following graph

 Although they may look different, these two graphs are the same

y
0 2 3 1 4 6 5 7

What 1s the Effect of the Reversal ?

How does a reversal change the breakpoint graph?

* The gray paths stayed the same for both graphs

* There is a change in the graph at this point

* There is another change at this point

* The black edges are unaffected by the reversal so they remain the
same for both graphs

Before: 023 7

After: 023 7

A reversal affects 4 edges in the
breakpoint graph

- A reversal removes 2 edges (red) and replaces them with
2 new edges (blue)

Effects of Reversals

Case 1:

Both edges belong to the same cycle

* Remove the center black edges and replace them with new
black edges (there are two ways to replace them)

* (a) After this replacement, there now exists 2 cycles instead of 1

cycle
* (b) Or after this replacement, there still exists 1 cycle

Therefore, after the reversal

cnp?c(ﬂs —cn

This is called a proper reversal
since there’s a cycle increase
after the reversal. TN

Effects of Reversals (Continued)

Case 2:

Both edges belong to different cycles

* Remove the center black edges and replace them with new black
edges
 After the replacement, there now exists 1 cycle instead of 2 cycles

mmmp c(mp) —c(m) =-1

Therefore, for every < jz >
permutation and reversal G

p; c(np) —c(m) < 1

‘ Identity permutation (n=0)

Reversal Distance and Maximum Cycle
Decomposition

* Since the identity permutation of size n contains the maximum cycle
decomposition of n+1, c(identity) = n+1

* c(identity) — c(m) equals the number of cycles that need to be
“added” to c(m) while transforming 7 into the identity

* Based on the previous theorem, at best after each reversal, the
cycle decomposition could be increased by one, then:
d(m) = c(identity) — c(n) = n+1 — c(m)

* Yet, not every reversal can increase the cycle decomposition

) 7 herefore, d(m) = n+1 — c(r)

‘Signed Permutations

= Up to this point, all permutations to sort were
unsigned

= But genes have directions... so we should
consider signed permutations

Signed Permutation

* Genes are directed fragments of DNA and we represent a genome
by a signed permutation

* If genes are in the same position but there orientations are
different, they do not have the equivalent gene order

* For example, these two permutations have the same order, but
each gene’s orientation is the reverse; therefore, they are not
equivalent gene sequences

From Signed to Unsigned Permutation

* Begin by constructing a normal signed breakpoint graph

 Redefine each vertex x with the following rules:

» Ifvertex x is positive, replace vertex x with vertex 2x-1 and
vertex 2x in that order

» Ifvertex x is negative, replace vertex x with vertex 2x and
vertex 2x-1 in that order

» The extension vertices x = 0 and x = n+1 are kept as it was
before

RS 19 20 22 21 23
g 4 h A bt o4
0 a 8 63.-6b 2w, x 9a. 9k, a 10b 11a 11b
13 5 ¢ g & (& 8 -')' +9‘ “+1‘ +‘10 11
0 3 -5 +8 -6 +4 -7 49 +2 +1 10 -11 12

From Signed to Unsigned Permutation (Continued)

* Construct the breakpoint graph as usual
* Notice the alternating cycles in the graph between every other
vertex pair

* Since these cycles came from the same signed vertex, we will not
be performing any reversal on both pairs at the same time;
therefore, these cycles can be removed from the graph

- ~o

\
RN \ Al \
\ ¥ \ e ~ \ A \
Pt i . N \ N N ———
\ 7 N2 N \ - ~
- \ \ N -
Py ’ RN \ \ N ¥
PR N
N 7 , < \ N (N

7’
4 ,' ’ 7’ ’
.7 , ’ ’ ’ N
’ ’ 4 4 4 N \ AN
Vs ’ ’ ’ ’ , N\ < (SN \ Y N \ N
v 7 ’ ’ ’ 7 \ \ N \ N \ \
7’ \ 7’ AY (
’ ’ ’ ’ ’ , 7 . \ \ AN \ \ AN \\,_\ N
. ’ ’ ’ ’ ’ ’ - ~
. ’ ’ ’ / 7/ / v,/ N \ ~ \ N p N7 ~ AN -~ -~
v’ ’ \ \ A N, N N 4 N 7 ~
, 4 4 ’ 4 Q \ \ \ 4 \ ’ N
, 4 ’ 4 \ \ \ ’ N \ ’ \
’ ’ ’ ’ \ N \ 4 A \ ’ \
, ’ ’ ’ \ \ ’ \ \ ’ \

0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

Interleaving Edges

* Interleaving edges are grey edges that cross each other
Example: Edges (0,1) and (18, 19) are interleaving

* Cycles are interleaving if they have an interleaving
edge

- ~o

These 2 grey edges

intefeave

4 ’ 4 ’ ’ ’ 2R \ ’ \
4 ’ ’ ’ ’ ’ V2R \ \ N ’ V2NN \
, ’ ’ / ’ ’ ’ \ ‘\ \ N ’ ’ \ \
® & ® ® & & & v ® ® © & & v =

0O S 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

Interleaving Graphs

* An Interleaving Graph is defined on the set of cycles in the
Breakpoint graph and are connected by edges where cycles are
interleaved

PN

0O 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

BG\C/@D O—0O" OF

Interleaving Graphs (Continued)

* Oriented cycles are cycles that have the following form
* Mark them on the interleave graph
* Unoriented cycles are cycles that have the following form

* In our example, A, B, D, E are unoriented cycles while C, F

are oriented cycles
g C

BG\Q/@” *Oo—0" O

Hurdles

* Remove the oriented components from the interleaving graph

* The following is the breakpoint graph with these oriented
components removed

* Hurdles are connected components that do not contain any other
connected components within it

B b A OF ©

Hurdle

Reversal Distance with Hurdles

* Hurdles are obstacles in the genome rearrangement problem

* They cause a higher number of required reversals for a
permutation to transform into the identity permutation

* Let h(w) be the number of hurdles in permutation ©t

 Taking into account of hurdles, the following formula gives a
tighter bound on reversal distance:

) () >ntl—c(n)+ h(n)

