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GENOME 

REARRANGEMENTS 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

 

Similarity blocks 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

Before 

After 

Evolution is manifested as the divergence 

in gene order 



Transforming Cabbage into Turnip 



Types of Rearrangements 

Reversal 

1  2  3  4  5  6 1  2 -5 -4 -3  6 

Translocation 
1  2  3  

44  5  6 

1  2 6  

4  5 3  

1  2  3  4   

5  6 
1  2  3  4  5  6 

Fusion 

Fission 



Reversals: Example 

 
           = 1 2 3 4 5 6 7 8                  

                                                                               

(3,5) 
 

                  1 2 5 4 3 6 7 8 

 

 

                   

 



Reversals: Example 

 
           = 1 2 3 4 5 6 7 8                  

                                                                               
(3,5) 

 
                  1 2 5 4 3 6 7 8 
 

(5,6) 
 
                  1 2 5 4 6 3 7 8 

 



Reversals and Gene Orders 

 Gene order is represented by a 

permutation  

1 ------ i-1 i i+1 ------ j-1 j j+1 ----- n 

1 ------ i-1 j j-1 ------ i+1 i j+1 ----- n 

 Reversal ( i, j ) reverses (flips) the 

elements from i to j in  

(i,j) 



Reversal Distance Problem 
 

 Goal: Given two permutations, find the shortest 
series of reversals that transforms one into another 

 

 Input: Permutations  and 

 Output: A series of reversals 1,… t transforming  
into  such that t is minimum 

 

 t - reversal distance between  and 

 d( , ) - smallest possible value of t, given  and 

 



Sorting By Reversals Problem 

 

 Goal: Given a permutation, find a shortest 
series of reversals that transforms it into the 
identity permutation (1 2 … n )  

 

 Input: Permutation 

 Output: A series of reversals 1, … t 
transforming  into the identity permutation 
such that t is minimum 

                     



Sorting By Reversals: Example 

 t =d(  ) - reversal distance of 

 Example : 

                         =  3  4  2  1  5  6  7  10  9  8 

                               4  3  2  1 5   6  7  10  9  8 

                               4  3  2  1  5  6  7    8  9 10 

                               1  2  3  4  5  6  7    8  9 10 

        So d(  ) = 3 



Sorting by reversals: 5 steps 

Step 0: 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: 1 2 3 4 5 6 7 8



Sorting by reversals: 4 steps 

Step 0: 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: 1 2 3 4 5 6 7 8



Pancake Flipping Problem 

 The chef is sloppy; he 

prepares an unordered stack 

of pancakes of different sizes 

 The waiter wants to 

rearrange them (so that the 

smallest winds up on top, 

and so on, down to the 

largest at the bottom) 

 He does it by flipping over 

several from the top, 

repeating this as many times 

as necessary 

Christos Papadimitrou and 

Bill Gates flip pancakes 



Pancake Flipping Problem: Formulation 

 

 Goal: Given a stack of n pancakes, what is 

the minimum number of flips to rearrange 

them into perfect stack? 

 Input: Permutation  

 Output: A series of prefix reversals 1, … t 

transforming  into the identity permutation 

such that t is minimum 

 



Pancake Flipping Problem: Greedy Algorithm 

 Greedy approach: 2 prefix reversals at most 

to place a pancake in its right position, 2n – 2 

steps total at most 

 William Gates and Christos Papadimitriou 

showed in the mid-1970s that this problem 

can be solved by at most 5/3 (n + 1) prefix 

reversals 

 



Sorting By Reversals: A Greedy Algorithm 

 

 If sorting permutation  = 1 2 3 6 4 5, the first 
three elements are already in order so it does 
not make any sense to break them.  

 The length of the already sorted prefix of  is 
denoted prefix( ) 

  prefix( ) = 3 

 This results in an idea for a greedy algorithm: 
increase prefix( ) at every step 



 Doing so,   can be sorted 

     
    1 2 3 6 4 5  
 
                       1 2 3 4 6 5 
                        
                       1 2 3 4 5 6 

 

 Number of steps to sort permutation of 
length n is at most (n – 1) 

Greedy Algorithm: An Example 



Greedy Algorithm: Pseudocode 

SimpleReversalSort( ) 

1 for  i  1 to n – 1 

2    j  position of element i in  (i.e., j = i) 

3    if  j ≠i 

4          * (i, j) 

5       output  

6    if  is the identity permutation  

7      return 



Analyzing SimpleReversalSort 

 SimpleReversalSort does not guarantee the 
smallest number of reversals and takes five 
steps on   = 6 1 2 3 4 5 : 

 Step 1: 1 6 2 3 4 5 

 Step 2: 1 2 6 3 4 5  

 Step 3: 1 2 3 6 4 5 

 Step 4: 1 2 3 4 6 5 

 Step 5: 1 2 3 4 5 6 



 But it can be sorted in two steps: 

    =  6 1 2 3 4 5    

 Step 1:  5 4 3 2 1 6      

 Step 2:  1 2 3 4 5 6 

 So, SimpleReversalSort( ) is not optimal 

 

 Optimal algorithms are unknown for many 

problems; approximation algorithms are used 

Analyzing SimpleReversalSort (cont’d) 



Approximation Algorithms 

 

 These algorithms find approximate solutions 
rather than optimal solutions 

 The approximation ratio of an algorithm A on 
input   is: 

                    A( ) / OPT( ) 

where  

        A( ) - solution produced by algorithm A                 
OPT( ) - optimal solution of the problem 



Approximation Ratio/Performance Guarantee 

 Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n 

 For algorithm A that minimizes objective 

function (minimization algorithm): 

 max| | = n A( ) / OPT( ) 



Approximation Ratio/Performance Guarantee 

 Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n 

 For algorithm A that minimizes objective 

function (minimization algorithm): 

 max| | = n A( ) / OPT( ) 

 For maximization algorithm: 

 min| | = n A( ) / OPT( ) 



= 2 3… n-1 n

 A pair of elements  i and  i + 1 are adjacent if  

                          i+1 = i  + 1 

 For example: 

         = 1  9  3  4  7  8  2  6  5 

 (3, 4) or (7, 8) and (6,5) are adjacent pairs 

Adjacencies and Breakpoints 



There is a breakpoint between any adjacent 
element that are non-consecutive: 

 

                 = 1  9  3  4  7  8  2  6  5 

 

 Pairs  (1,9), (9,3), (4,7), (8,2) and (2,6) form 
breakpoints of permutation 

 b( ) - # breakpoints in permutation 

Breakpoints 



Adjacency & Breakpoints 

•An adjacency - a pair of adjacent elements that are consecutive 

• A breakpoint - a pair of adjacent elements that are not 

consecutive 

π = 5  6  2  1  3  4

  

0  5  6  2  1  3  4  7 

adjacencies 

breakpoints 

Extend π with π0 = 0 and π7 = 7 

 



 We put two elements  0 =0 and  n + 1=n+1 at 

the ends of 

Example:  

 

 

Extending with 0 and 10 

Note: A new breakpoint was created after extending 

Extending Permutations 

 = 1  9  3  4  7  8  2  6  5 

 = 0 1   9  3  4  7  8   2  6  5  10 



 Each reversal eliminates at most 2 breakpoints. 

  = 2  3  1  4  6  5 

 0  2  3  1  4  6  5  7         b( ) = 5 

 0  1  3  2  4  6  5  7               b( ) = 4 

 0  1  2  3  4  6  5  7       b( ) = 2 

 0  1  2  3  4  5  6  7                 b( ) = 0 

Reversal Distance and Breakpoints 



 Each reversal eliminates at most 2 breakpoints. 

 This implies:  

      reversal distance  ≥  #breakpoints / 2 

  = 2  3  1  4  6  5 

 0  2  3  1  4  6  5  7         b( ) = 5 

 0  1  3  2  4  6  5  7               b( ) = 4 

 0  1  2  3  4  6  5  7       b( ) = 2 

 0  1  2  3  4  5  6  7                 b( ) = 0 

Reversal Distance and Breakpoints 



Sorting By Reversals: A Better Greedy Algorithm 

BreakPointReversalSort( ) 

1 while b( ) > 0 

2  Among all possible reversals,   
choose reversal  minimizing b(  • ) 

3     • (i, j) 

4  output 

5 return 



Sorting By Reversals: A Better Greedy Algorithm 

BreakPointReversalSort( ) 

1 while b( ) > 0 

2  Among all possible reversals,   
choose reversal  minimizing b(  • ) 

3     • (i, j) 

4  output 

5 return 

Problem: this algorithm may work forever 



Strips 

 Strip: an interval between two consecutive 
breakpoints in a permutation  

 Decreasing strip: strip of elements in 
decreasing order (e.g. 6 5 and 3 2 ). 

 Increasing strip: strip of elements in increasing 
order (e.g. 7 8) 

                

                 0  1  9  4  3  7  8  2  5  6 10  

 
 A single-element strip can be declared either increasing or 

decreasing. We will choose to declare them as decreasing with 
exception of the strips with 0 and n+1 

 



Reducing the Number of Breakpoints 

Theorem 1: 

   If permutation contains at least one 

decreasing strip, then there exists a 

reversal  which decreases the number of 

breakpoints (i.e. b( • ) < b( ) ) 



Things To Consider 

 For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  2  9      b( ) = 5 

 Choose decreasing strip with the smallest 

element k in ( k = 2 in this case) 



Things To Consider (cont’d) 

 For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  22  9      b( ) = 5 

 Choose decreasing strip with the smallest 

element k in ( k = 2 in this case) 



Things To Consider (cont’d) 

 For   = 1 4 6 5 7 8 3 2   

             0  11  4  6  5  7  8  3  22  9      b( ) = 5 

 Choose decreasing strip with the smallest 

element k in ( k = 2 in this case)  

 Find k – 1 in the permutation 



Things To Consider (cont’d) 

 For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  2  9      b( ) = 5 

 Choose decreasing strip with the smallest 
element k in ( k = 2 in this case) 

 Find k – 1 in the permutation 

 Reverse the segment between k and k-1: 

 0  1  4  6  5  7  8  3  2  9  b( ) = 5 

 

 0  1  2  3  8  7  5  6  4  9  b( ) = 4 



Reducing the Number of Breakpoints 

Again 
  

 If there is no decreasing strip, there may be 
no reversal   that reduces the number of 
breakpoints (i.e. b( • )  ≥ b( ) for any  
reversal ).  

 By reversing an increasing strip ( # of 
breakpoints stay unchanged ), we will create 
a decreasing strip at the next step. Then the 
number of breakpoints will be reduced in the 
next step (theorem 1). 



Things To Consider (cont’d) 

 There are no decreasing strips in , for: 

 

  = 0  1  2  5  6  7  3  4  8    b( ) = 3 

 • (6,7) = 0  1  2  5  6  7  4  3  8    b( ) = 3  

 (6,7) does not change the # of breakpoints 

 (6,7) creates a decreasing strip thus 
guaranteeing that the next step will decrease 
the # of breakpoints. 



ImprovedBreakpointReversalSort 

ImprovedBreakpointReversalSort( ) 
1 while b( ) > 0 
2     if  has a decreasing strip 
3    Among all possible reversals, choose reversal   

                              that   minimizes b(  • ) 

4     else 
5        Choose a reversal  that flips an increasing strip in 

6      • 
7      output 
8  return 



 ImprovedBreakPointReversalSort is an 

approximation algorithm with a performance 

guarantee of at most 4 

 It eliminates at least one breakpoint in every two 

steps;  at most 2b( ) steps 

 Approximation ratio: 2b( )  / d( ) 

 Optimal algorithm eliminates at most 2 

breakpoints in every step: d( )  b( ) / 2 

 Performance guarantee: 

 ( 2b( ) / d( ) )  [ 2b( ) / (b( ) / 2) ] =  4 

ImprovedBreakpointReversalSort: 

Performance Guarantee  



GRAPHS 



Breakpoint Graph 

1) Represent the elements of the permutation π = 2 3 1 4 6 5 

as vertices in a graph (ordered along a line) 

    0           2            3           1          4            6           5            7 

2) Connect vertices in order given by π with black edges (black 

path) 

3) Connect vertices in order given by 1 2 3 4 5 6 with grey 

edges  (grey path) 

4)    Superimpose black and grey paths 



Two Equivalent Representations of the 

Breakpoint Graph 

    0           2            3           1          4            6           5            7 

    0           1            2           3          4            5           6            7 

• Consider the following Breakpoint Graph 

• If we line up the gray path  (instead of black path) on a horizontal 

line, then we would get the following graph 

• Although they may look different, these two graphs are the same 



What is the Effect of the Reversal ? 

    0           1            2           3          4            5           6            7 

    0           1            2           3          4            5           6            7 

• The gray paths stayed the same for both graphs 

• There is a change in the graph at this point 

• There is another change at this point 

How does a reversal change the breakpoint graph?   

Before: 0 2 3 1 4 6 5 7 

After:   0 2 3 5 6 4 1 7 

• The black edges are unaffected by the reversal so they remain the 

same for both graphs 



A reversal affects 4 edges in the 

breakpoint graph 

    0           1            2           3          4            5           6            7 

• A reversal removes  2 edges (red) and replaces them with 

2 new edges (blue) 



Effects of Reversals 
Case 1:  

Both edges belong to the same cycle 

• Remove the center black edges and replace them with new 

black edges (there are two ways to replace them) 

• (a) After this replacement, there now exists 2 cycles instead of 1 

cycle 

c(πρ) – c(π) = 1 

This is called a proper reversal 

since there’s a cycle increase 

after the reversal. 

• (b) Or after this replacement, there still exists 1 cycle 

c(πρ) – c(π) = 0 
Therefore, after the reversal 

c(πρ) – c(π) = 0 or 1  



Effects of Reversals (Continued) 

Case 2: 

Both edges belong to different cycles 

• Remove the center black edges and replace them with new black 

edges 

• After the replacement, there now exists 1 cycle instead of 2 cycles 

c(πρ) – c(π) = -1 

Therefore, for every 

permutation π and reversal 

ρ, c(πρ) – c(π) ≤ 1 



Identity permutation (n=6) 

    0           1            2           3          4            5           6            7 



Reversal Distance and Maximum Cycle 

Decomposition 

• Since the identity permutation of size n contains the maximum cycle 

decomposition of n+1, c(identity) = n+1 

• c(identity) – c(π) equals the number of cycles that need to be 

“added” to c(π) while transforming π into the identity 

• Based on the previous theorem, at best after each reversal, the 

cycle decomposition could be increased by one, then:                                        

            d(π) = c(identity) – c(π) = n+1 – c(π) 

• Yet, not every reversal can increase the cycle decomposition 

Therefore, d(π) ≥ n+1 – c(π) 



Signed Permutations 

 Up to this point, all permutations to sort were 

unsigned 

 But genes have directions… so we should 

consider signed permutations 

 
 

5’ 3’ 

=    1        -2      - 3     4         -5 



Signed Permutation 

• Genes are directed fragments of DNA and we represent a genome 

by a signed permutation 

• If genes are in the same position but there orientations are 

different, they do not have the equivalent gene order 

• For example, these two permutations have the same order, but 

each gene’s orientation is the reverse; therefore, they are not 

equivalent gene sequences 

        1       2        3        4       5 

        -1       2       -3      -4      -5 



From Signed to Unsigned Permutation 

    0    +3    -5   +8    -6    +4    -7   +9    +2   +1  +10  -11   12 

•      Begin by constructing a normal signed breakpoint graph 

• Redefine each vertex x with the following rules: 

  If vertex x is positive, replace vertex x with vertex 2x-1 and 

vertex 2x in that order 

 

  If vertex x is negative, replace vertex x with vertex 2x and 

vertex 2x-1 in that order 

 

  The extension vertices x = 0 and x = n+1 are kept as it was 

before 

   0    3a    3b  5a  5b    8a  8b     6a   6b 4a   4b   7a   7b   9a   9b    2a   2b    1a  1b  10a  10b 11a 11b 

23 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

 +3        -5        +8         -6       +4         -7        +9        +2        +1      +10       -11 



From Signed to Unsigned Permutation (Continued) 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

• Construct the breakpoint graph as usual 

• Notice the alternating cycles in the graph between every other 

vertex pair 

• Since these cycles came from the same signed vertex, we will not 

be performing any reversal on both pairs at the same time; 

therefore, these cycles can be removed from the graph 



Interleaving Edges 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

• Interleaving edges are grey edges that cross each other 

These 2 grey edges 

interleave 

Example: Edges (0,1) and (18, 19) are interleaving 

• Cycles are interleaving if they have an interleaving 

edge 



Interleaving Graphs 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

• An Interleaving Graph is defined on the set of cycles in the 

Breakpoint graph and are connected by edges where cycles are 

interleaved 

A 

B 
C 

E 

F 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

A 

B 
C 

E 

F 

D 

D A B 

C 

E F 



Interleaving Graphs (Continued) 

A B 

C 

D E F 

• Oriented cycles are cycles that have the following form 

F 

C 

• Unoriented cycles are cycles that have the following form 

• Mark them on the interleave graph 

E 

• In our example, A, B, D, E are unoriented cycles while C, F 

are oriented cycles 



Hurdles 

• Remove the oriented components from the interleaving graph 

A B 

C 

D E F 

• The following is the breakpoint graph with these oriented 

components removed 

• Hurdles are connected components that do not contain any other 

connected components within it 

A 

B D 

E 

Hurdle 



Reversal Distance with Hurdles 

• Hurdles are obstacles in the genome rearrangement problem 

• They cause a higher number of required reversals for a 

permutation to transform into the identity permutation 

• Taking into account of hurdles, the following formula gives a 

tighter bound on reversal distance: 

d(π) ≥ n+1 – c(π) + h(π) 

• Let h(π) be the number of hurdles in permutation π 


