
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

GENOME

REARRANGEMENTS

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Similarity blocks

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

 Gene order comparison:

Before

After

Evolution is manifested as the divergence

in gene order

Transforming Cabbage into Turnip

Types of Rearrangements

Reversal

1 2 3 4 5 6 1 2 -5 -4 -3 6

Translocation
1 2 3

44 5 6

1 2 6

4 5 3

1 2 3 4

5 6
1 2 3 4 5 6

Fusion

Fission

Reversals: Example

 = 1 2 3 4 5 6 7 8

(3,5)

 1 2 5 4 3 6 7 8

Reversals: Example

 = 1 2 3 4 5 6 7 8

(3,5)

 1 2 5 4 3 6 7 8

(5,6)

 1 2 5 4 6 3 7 8

Reversals and Gene Orders

 Gene order is represented by a

permutation

1 ------ i-1 i i+1 ------ j-1 j j+1 ----- n

1 ------ i-1 j j-1 ------ i+1 i j+1 ----- n

 Reversal (i, j) reverses (flips) the

elements from i to j in

(i,j)

Reversal Distance Problem

 Goal: Given two permutations, find the shortest
series of reversals that transforms one into another

 Input: Permutations and

 Output: A series of reversals 1,… t transforming
into such that t is minimum

 t - reversal distance between and

 d(,) - smallest possible value of t, given and

Sorting By Reversals Problem

 Goal: Given a permutation, find a shortest
series of reversals that transforms it into the
identity permutation (1 2 … n)

 Input: Permutation

 Output: A series of reversals 1, … t
transforming into the identity permutation
such that t is minimum

Sorting By Reversals: Example

 t =d() - reversal distance of

 Example :

 = 3 4 2 1 5 6 7 10 9 8

 4 3 2 1 5 6 7 10 9 8

 4 3 2 1 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 So d() = 3

Sorting by reversals: 5 steps

Step 0: 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: 1 2 3 4 5 6 7 8

Sorting by reversals: 4 steps

Step 0: 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: 1 2 3 4 5 6 7 8

Pancake Flipping Problem

 The chef is sloppy; he

prepares an unordered stack

of pancakes of different sizes

 The waiter wants to

rearrange them (so that the

smallest winds up on top,

and so on, down to the

largest at the bottom)

 He does it by flipping over

several from the top,

repeating this as many times

as necessary

Christos Papadimitrou and

Bill Gates flip pancakes

Pancake Flipping Problem: Formulation

 Goal: Given a stack of n pancakes, what is

the minimum number of flips to rearrange

them into perfect stack?

 Input: Permutation

 Output: A series of prefix reversals 1, … t

transforming into the identity permutation

such that t is minimum

Pancake Flipping Problem: Greedy Algorithm

 Greedy approach: 2 prefix reversals at most

to place a pancake in its right position, 2n – 2

steps total at most

 William Gates and Christos Papadimitriou

showed in the mid-1970s that this problem

can be solved by at most 5/3 (n + 1) prefix

reversals

Sorting By Reversals: A Greedy Algorithm

 If sorting permutation = 1 2 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

 The length of the already sorted prefix of is
denoted prefix()

 prefix() = 3

 This results in an idea for a greedy algorithm:
increase prefix() at every step

 Doing so, can be sorted

 1 2 3 6 4 5

 1 2 3 4 6 5

 1 2 3 4 5 6

 Number of steps to sort permutation of
length n is at most (n – 1)

Greedy Algorithm: An Example

Greedy Algorithm: Pseudocode

SimpleReversalSort()

1 for i  1 to n – 1

2 j  position of element i in (i.e., j = i)

3 if j ≠i

4  * (i, j)

5 output

6 if is the identity permutation

7 return

Analyzing SimpleReversalSort

 SimpleReversalSort does not guarantee the
smallest number of reversals and takes five
steps on = 6 1 2 3 4 5 :

 Step 1: 1 6 2 3 4 5

 Step 2: 1 2 6 3 4 5

 Step 3: 1 2 3 6 4 5

 Step 4: 1 2 3 4 6 5

 Step 5: 1 2 3 4 5 6

 But it can be sorted in two steps:

 = 6 1 2 3 4 5

 Step 1: 5 4 3 2 1 6

 Step 2: 1 2 3 4 5 6

 So, SimpleReversalSort() is not optimal

 Optimal algorithms are unknown for many

problems; approximation algorithms are used

Analyzing SimpleReversalSort (cont’d)

Approximation Algorithms

 These algorithms find approximate solutions
rather than optimal solutions

 The approximation ratio of an algorithm A on
input is:

 A() / OPT()

where

 A() - solution produced by algorithm A
OPT() - optimal solution of the problem

Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n

 For algorithm A that minimizes objective

function (minimization algorithm):

 max| | = n A() / OPT()

Approximation Ratio/Performance Guarantee

 Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n

 For algorithm A that minimizes objective

function (minimization algorithm):

 max| | = n A() / OPT()

 For maximization algorithm:

 min| | = n A() / OPT()

= 2 3… n-1 n

 A pair of elements i and i + 1 are adjacent if

 i+1 = i + 1

 For example:

 = 1 9 3 4 7 8 2 6 5

 (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints

There is a breakpoint between any adjacent
element that are non-consecutive:

 = 1 9 3 4 7 8 2 6 5

 Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form
breakpoints of permutation

 b() - # breakpoints in permutation

Breakpoints

Adjacency & Breakpoints

•An adjacency - a pair of adjacent elements that are consecutive

• A breakpoint - a pair of adjacent elements that are not

consecutive

π = 5 6 2 1 3 4

0 5 6 2 1 3 4 7

adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7

 We put two elements 0 =0 and n + 1=n+1 at

the ends of

Example:

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

 = 1 9 3 4 7 8 2 6 5

 = 0 1 9 3 4 7 8 2 6 5 10

 Each reversal eliminates at most 2 breakpoints.

 = 2 3 1 4 6 5

 0 2 3 1 4 6 5 7 b() = 5

 0 1 3 2 4 6 5 7 b() = 4

 0 1 2 3 4 6 5 7 b() = 2

 0 1 2 3 4 5 6 7 b() = 0

Reversal Distance and Breakpoints

 Each reversal eliminates at most 2 breakpoints.

 This implies:

 reversal distance ≥ #breakpoints / 2

 = 2 3 1 4 6 5

 0 2 3 1 4 6 5 7 b() = 5

 0 1 3 2 4 6 5 7 b() = 4

 0 1 2 3 4 6 5 7 b() = 2

 0 1 2 3 4 5 6 7 b() = 0

Reversal Distance and Breakpoints

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort()

1 while b() > 0

2 Among all possible reversals,
choose reversal minimizing b(•)

3  • (i, j)

4 output

5 return

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort()

1 while b() > 0

2 Among all possible reversals,
choose reversal minimizing b(•)

3  • (i, j)

4 output

5 return

Problem: this algorithm may work forever

Strips

 Strip: an interval between two consecutive
breakpoints in a permutation

 Decreasing strip: strip of elements in
decreasing order (e.g. 6 5 and 3 2).

 Increasing strip: strip of elements in increasing
order (e.g. 7 8)

 0 1 9 4 3 7 8 2 5 6 10

 A single-element strip can be declared either increasing or

decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+1

Reducing the Number of Breakpoints

Theorem 1:

 If permutation contains at least one

decreasing strip, then there exists a

reversal which decreases the number of

breakpoints (i.e. b(•) < b())

Things To Consider

 For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 2 9 b() = 5

 Choose decreasing strip with the smallest

element k in (k = 2 in this case)

Things To Consider (cont’d)

 For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 22 9 b() = 5

 Choose decreasing strip with the smallest

element k in (k = 2 in this case)

Things To Consider (cont’d)

 For = 1 4 6 5 7 8 3 2

 0 11 4 6 5 7 8 3 22 9 b() = 5

 Choose decreasing strip with the smallest

element k in (k = 2 in this case)

 Find k – 1 in the permutation

Things To Consider (cont’d)

 For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 2 9 b() = 5

 Choose decreasing strip with the smallest
element k in (k = 2 in this case)

 Find k – 1 in the permutation

 Reverse the segment between k and k-1:

 0 1 4 6 5 7 8 3 2 9 b() = 5

 0 1 2 3 8 7 5 6 4 9 b() = 4

Reducing the Number of Breakpoints

Again

 If there is no decreasing strip, there may be
no reversal that reduces the number of
breakpoints (i.e. b(•) ≥ b() for any
reversal).

 By reversing an increasing strip (# of
breakpoints stay unchanged), we will create
a decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

Things To Consider (cont’d)

 There are no decreasing strips in , for:

 = 0 1 2 5 6 7 3 4 8 b() = 3

 • (6,7) = 0 1 2 5 6 7 4 3 8 b() = 3

 (6,7) does not change the # of breakpoints

 (6,7) creates a decreasing strip thus
guaranteeing that the next step will decrease
the # of breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort()
1 while b() > 0
2 if has a decreasing strip
3 Among all possible reversals, choose reversal

 that minimizes b(•)

4 else
5 Choose a reversal that flips an increasing strip in

6  •
7 output
8 return

 ImprovedBreakPointReversalSort is an

approximation algorithm with a performance

guarantee of at most 4

 It eliminates at least one breakpoint in every two

steps; at most 2b() steps

 Approximation ratio: 2b() / d()

 Optimal algorithm eliminates at most 2

breakpoints in every step: d() b() / 2

 Performance guarantee:

 (2b() / d()) [2b() / (b() / 2)] = 4

ImprovedBreakpointReversalSort:

Performance Guarantee

GRAPHS

Breakpoint Graph

1) Represent the elements of the permutation π = 2 3 1 4 6 5

as vertices in a graph (ordered along a line)

 0 2 3 1 4 6 5 7

2) Connect vertices in order given by π with black edges (black

path)

3) Connect vertices in order given by 1 2 3 4 5 6 with grey

edges (grey path)

4) Superimpose black and grey paths

Two Equivalent Representations of the

Breakpoint Graph

 0 2 3 1 4 6 5 7

 0 1 2 3 4 5 6 7

• Consider the following Breakpoint Graph

• If we line up the gray path (instead of black path) on a horizontal

line, then we would get the following graph

• Although they may look different, these two graphs are the same

What is the Effect of the Reversal ?

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

• The gray paths stayed the same for both graphs

• There is a change in the graph at this point

• There is another change at this point

How does a reversal change the breakpoint graph?

Before: 0 2 3 1 4 6 5 7

After: 0 2 3 5 6 4 1 7

• The black edges are unaffected by the reversal so they remain the

same for both graphs

A reversal affects 4 edges in the

breakpoint graph

 0 1 2 3 4 5 6 7

• A reversal removes 2 edges (red) and replaces them with

2 new edges (blue)

Effects of Reversals
Case 1:

Both edges belong to the same cycle

• Remove the center black edges and replace them with new

black edges (there are two ways to replace them)

• (a) After this replacement, there now exists 2 cycles instead of 1

cycle

c(πρ) – c(π) = 1

This is called a proper reversal

since there’s a cycle increase

after the reversal.

• (b) Or after this replacement, there still exists 1 cycle

c(πρ) – c(π) = 0
Therefore, after the reversal

c(πρ) – c(π) = 0 or 1

Effects of Reversals (Continued)

Case 2:

Both edges belong to different cycles

• Remove the center black edges and replace them with new black

edges

• After the replacement, there now exists 1 cycle instead of 2 cycles

c(πρ) – c(π) = -1

Therefore, for every

permutation π and reversal

ρ, c(πρ) – c(π) ≤ 1

Identity permutation (n=6)

 0 1 2 3 4 5 6 7

Reversal Distance and Maximum Cycle

Decomposition

• Since the identity permutation of size n contains the maximum cycle

decomposition of n+1, c(identity) = n+1

• c(identity) – c(π) equals the number of cycles that need to be

“added” to c(π) while transforming π into the identity

• Based on the previous theorem, at best after each reversal, the

cycle decomposition could be increased by one, then:

 d(π) = c(identity) – c(π) = n+1 – c(π)

• Yet, not every reversal can increase the cycle decomposition

Therefore, d(π) ≥ n+1 – c(π)

Signed Permutations

 Up to this point, all permutations to sort were

unsigned

 But genes have directions… so we should

consider signed permutations

5’ 3’

= 1 -2 - 3 4 -5

Signed Permutation

• Genes are directed fragments of DNA and we represent a genome

by a signed permutation

• If genes are in the same position but there orientations are

different, they do not have the equivalent gene order

• For example, these two permutations have the same order, but

each gene’s orientation is the reverse; therefore, they are not

equivalent gene sequences

 1 2 3 4 5

 -1 2 -3 -4 -5

From Signed to Unsigned Permutation

 0 +3 -5 +8 -6 +4 -7 +9 +2 +1 +10 -11 12

• Begin by constructing a normal signed breakpoint graph

• Redefine each vertex x with the following rules:

 If vertex x is positive, replace vertex x with vertex 2x-1 and

vertex 2x in that order

 If vertex x is negative, replace vertex x with vertex 2x and

vertex 2x-1 in that order

 The extension vertices x = 0 and x = n+1 are kept as it was

before

 0 3a 3b 5a 5b 8a 8b 6a 6b 4a 4b 7a 7b 9a 9b 2a 2b 1a 1b 10a 10b 11a 11b

23

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

 +3 -5 +8 -6 +4 -7 +9 +2 +1 +10 -11

From Signed to Unsigned Permutation (Continued)

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• Construct the breakpoint graph as usual

• Notice the alternating cycles in the graph between every other

vertex pair

• Since these cycles came from the same signed vertex, we will not

be performing any reversal on both pairs at the same time;

therefore, these cycles can be removed from the graph

Interleaving Edges

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• Interleaving edges are grey edges that cross each other

These 2 grey edges

interleave

Example: Edges (0,1) and (18, 19) are interleaving

• Cycles are interleaving if they have an interleaving

edge

Interleaving Graphs

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• An Interleaving Graph is defined on the set of cycles in the

Breakpoint graph and are connected by edges where cycles are

interleaved

A

B
C

E

F

 0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

A

B
C

E

F

D

D A B

C

E F

Interleaving Graphs (Continued)

A B

C

D E F

• Oriented cycles are cycles that have the following form

F

C

• Unoriented cycles are cycles that have the following form

• Mark them on the interleave graph

E

• In our example, A, B, D, E are unoriented cycles while C, F

are oriented cycles

Hurdles

• Remove the oriented components from the interleaving graph

A B

C

D E F

• The following is the breakpoint graph with these oriented

components removed

• Hurdles are connected components that do not contain any other

connected components within it

A

B D

E

Hurdle

Reversal Distance with Hurdles

• Hurdles are obstacles in the genome rearrangement problem

• They cause a higher number of required reversals for a

permutation to transform into the identity permutation

• Taking into account of hurdles, the following formula gives a

tighter bound on reversal distance:

d(π) ≥ n+1 – c(π) + h(π)

• Let h(π) be the number of hurdles in permutation π

