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GENOME 

REARRANGEMENTS 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

 

Similarity blocks 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

 



Turnip vs Cabbage: Different mtDNA Gene Order 

 Gene order comparison: 

Before 

After 

Evolution is manifested as the divergence 

in gene order 



Transforming Cabbage into Turnip 



Types of Rearrangements 

Reversal 

1  2  3  4  5  6 1  2 -5 -4 -3  6 

Translocation 
1  2  3  

44  5  6 

1  2 6  

4  5 3  

1  2  3  4   

5  6 
1  2  3  4  5  6 

Fusion 

Fission 



Reversals: Example 

 
           = 1 2 3 4 5 6 7 8                  

                                                                               

(3,5) 
 

                  1 2 5 4 3 6 7 8 

 

 

                   

 



Reversals: Example 

 
           = 1 2 3 4 5 6 7 8                  

                                                                               
(3,5) 

 
                  1 2 5 4 3 6 7 8 
 

(5,6) 
 
                  1 2 5 4 6 3 7 8 

 



Reversals and Gene Orders 

 Gene order is represented by a 

permutation  

1 ------ i-1 i i+1 ------ j-1 j j+1 ----- n 

1 ------ i-1 j j-1 ------ i+1 i j+1 ----- n 

 Reversal ( i, j ) reverses (flips) the 

elements from i to j in  

(i,j) 



Reversal Distance Problem 
 

 Goal: Given two permutations, find the shortest 
series of reversals that transforms one into another 

 

 Input: Permutations  and 

 Output: A series of reversals 1,… t transforming  
into  such that t is minimum 

 

 t - reversal distance between  and 

 d( , ) - smallest possible value of t, given  and 

 



Sorting By Reversals Problem 

 

 Goal: Given a permutation, find a shortest 
series of reversals that transforms it into the 
identity permutation (1 2 … n )  

 

 Input: Permutation 

 Output: A series of reversals 1, … t 
transforming  into the identity permutation 
such that t is minimum 

                     



Sorting By Reversals: Example 

 t =d(  ) - reversal distance of 

 Example : 

                         =  3  4  2  1  5  6  7  10  9  8 

                               4  3  2  1 5   6  7  10  9  8 

                               4  3  2  1  5  6  7    8  9 10 

                               1  2  3  4  5  6  7    8  9 10 

        So d(  ) = 3 



Sorting by reversals: 5 steps 

Step 0: 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: 1 2 3 4 5 6 7 8



Sorting by reversals: 4 steps 

Step 0: 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: 1 2 3 4 5 6 7 8



Pancake Flipping Problem 

 The chef is sloppy; he 

prepares an unordered stack 

of pancakes of different sizes 

 The waiter wants to 

rearrange them (so that the 

smallest winds up on top, 

and so on, down to the 

largest at the bottom) 

 He does it by flipping over 

several from the top, 

repeating this as many times 

as necessary 

Christos Papadimitrou and 

Bill Gates flip pancakes 



Pancake Flipping Problem: Formulation 

 

 Goal: Given a stack of n pancakes, what is 

the minimum number of flips to rearrange 

them into perfect stack? 

 Input: Permutation  

 Output: A series of prefix reversals 1, … t 

transforming  into the identity permutation 

such that t is minimum 

 



Pancake Flipping Problem: Greedy Algorithm 

 Greedy approach: 2 prefix reversals at most 

to place a pancake in its right position, 2n – 2 

steps total at most 

 William Gates and Christos Papadimitriou 

showed in the mid-1970s that this problem 

can be solved by at most 5/3 (n + 1) prefix 

reversals 

 



Sorting By Reversals: A Greedy Algorithm 

 

 If sorting permutation  = 1 2 3 6 4 5, the first 
three elements are already in order so it does 
not make any sense to break them.  

 The length of the already sorted prefix of  is 
denoted prefix( ) 

  prefix( ) = 3 

 This results in an idea for a greedy algorithm: 
increase prefix( ) at every step 



 Doing so,   can be sorted 

     
    1 2 3 6 4 5  
 
                       1 2 3 4 6 5 
                        
                       1 2 3 4 5 6 

 

 Number of steps to sort permutation of 
length n is at most (n – 1) 

Greedy Algorithm: An Example 



Greedy Algorithm: Pseudocode 

SimpleReversalSort( ) 

1 for  i  1 to n – 1 

2    j  position of element i in  (i.e., j = i) 

3    if  j ≠i 

4          * (i, j) 

5       output  

6    if  is the identity permutation  

7      return 



Analyzing SimpleReversalSort 

 SimpleReversalSort does not guarantee the 
smallest number of reversals and takes five 
steps on   = 6 1 2 3 4 5 : 

 Step 1: 1 6 2 3 4 5 

 Step 2: 1 2 6 3 4 5  

 Step 3: 1 2 3 6 4 5 

 Step 4: 1 2 3 4 6 5 

 Step 5: 1 2 3 4 5 6 



 But it can be sorted in two steps: 

    =  6 1 2 3 4 5    

 Step 1:  5 4 3 2 1 6      

 Step 2:  1 2 3 4 5 6 

 So, SimpleReversalSort( ) is not optimal 

 

 Optimal algorithms are unknown for many 

problems; approximation algorithms are used 

Analyzing SimpleReversalSort (cont’d) 



Approximation Algorithms 

 

 These algorithms find approximate solutions 
rather than optimal solutions 

 The approximation ratio of an algorithm A on 
input   is: 

                    A( ) / OPT( ) 

where  

        A( ) - solution produced by algorithm A                 
OPT( ) - optimal solution of the problem 



Approximation Ratio/Performance Guarantee 

 Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n 

 For algorithm A that minimizes objective 

function (minimization algorithm): 

 max| | = n A( ) / OPT( ) 



Approximation Ratio/Performance Guarantee 

 Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n 

 For algorithm A that minimizes objective 

function (minimization algorithm): 

 max| | = n A( ) / OPT( ) 

 For maximization algorithm: 

 min| | = n A( ) / OPT( ) 



= 2 3… n-1 n

 A pair of elements  i and  i + 1 are adjacent if  

                          i+1 = i  + 1 

 For example: 

         = 1  9  3  4  7  8  2  6  5 

 (3, 4) or (7, 8) and (6,5) are adjacent pairs 

Adjacencies and Breakpoints 



There is a breakpoint between any adjacent 
element that are non-consecutive: 

 

                 = 1  9  3  4  7  8  2  6  5 

 

 Pairs  (1,9), (9,3), (4,7), (8,2) and (2,6) form 
breakpoints of permutation 

 b( ) - # breakpoints in permutation 

Breakpoints 



Adjacency & Breakpoints 

•An adjacency - a pair of adjacent elements that are consecutive 

• A breakpoint - a pair of adjacent elements that are not 

consecutive 

π = 5  6  2  1  3  4

  

0  5  6  2  1  3  4  7 

adjacencies 

breakpoints 

Extend π with π0 = 0 and π7 = 7 

 



 We put two elements  0 =0 and  n + 1=n+1 at 

the ends of 

Example:  

 

 

Extending with 0 and 10 

Note: A new breakpoint was created after extending 

Extending Permutations 

 = 1  9  3  4  7  8  2  6  5 

 = 0 1   9  3  4  7  8   2  6  5  10 



 Each reversal eliminates at most 2 breakpoints. 

  = 2  3  1  4  6  5 

 0  2  3  1  4  6  5  7         b( ) = 5 

 0  1  3  2  4  6  5  7               b( ) = 4 

 0  1  2  3  4  6  5  7       b( ) = 2 

 0  1  2  3  4  5  6  7                 b( ) = 0 

Reversal Distance and Breakpoints 



 Each reversal eliminates at most 2 breakpoints. 

 This implies:  

      reversal distance  ≥  #breakpoints / 2 

  = 2  3  1  4  6  5 

 0  2  3  1  4  6  5  7         b( ) = 5 

 0  1  3  2  4  6  5  7               b( ) = 4 

 0  1  2  3  4  6  5  7       b( ) = 2 

 0  1  2  3  4  5  6  7                 b( ) = 0 

Reversal Distance and Breakpoints 



Sorting By Reversals: A Better Greedy Algorithm 

BreakPointReversalSort( ) 

1 while b( ) > 0 

2  Among all possible reversals,   
choose reversal  minimizing b(  • ) 

3     • (i, j) 

4  output 

5 return 



Sorting By Reversals: A Better Greedy Algorithm 

BreakPointReversalSort( ) 

1 while b( ) > 0 

2  Among all possible reversals,   
choose reversal  minimizing b(  • ) 

3     • (i, j) 

4  output 

5 return 

Problem: this algorithm may work forever 



Strips 

 Strip: an interval between two consecutive 
breakpoints in a permutation  

 Decreasing strip: strip of elements in 
decreasing order (e.g. 6 5 and 3 2 ). 

 Increasing strip: strip of elements in increasing 
order (e.g. 7 8) 

                

                 0  1  9  4  3  7  8  2  5  6 10  

 
 A single-element strip can be declared either increasing or 

decreasing. We will choose to declare them as decreasing with 
exception of the strips with 0 and n+1 

 



Reducing the Number of Breakpoints 

Theorem 1: 

   If permutation contains at least one 

decreasing strip, then there exists a 

reversal  which decreases the number of 

breakpoints (i.e. b( • ) < b( ) ) 



Things To Consider 

 For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  2  9      b( ) = 5 

 Choose decreasing strip with the smallest 

element k in ( k = 2 in this case) 



Things To Consider (cont’d) 

 For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  22  9      b( ) = 5 

 Choose decreasing strip with the smallest 

element k in ( k = 2 in this case) 



Things To Consider (cont’d) 

 For   = 1 4 6 5 7 8 3 2   

             0  11  4  6  5  7  8  3  22  9      b( ) = 5 

 Choose decreasing strip with the smallest 

element k in ( k = 2 in this case)  

 Find k – 1 in the permutation 



Things To Consider (cont’d) 

 For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  2  9      b( ) = 5 

 Choose decreasing strip with the smallest 
element k in ( k = 2 in this case) 

 Find k – 1 in the permutation 

 Reverse the segment between k and k-1: 

 0  1  4  6  5  7  8  3  2  9  b( ) = 5 

 

 0  1  2  3  8  7  5  6  4  9  b( ) = 4 



Reducing the Number of Breakpoints 

Again 
  

 If there is no decreasing strip, there may be 
no reversal   that reduces the number of 
breakpoints (i.e. b( • )  ≥ b( ) for any  
reversal ).  

 By reversing an increasing strip ( # of 
breakpoints stay unchanged ), we will create 
a decreasing strip at the next step. Then the 
number of breakpoints will be reduced in the 
next step (theorem 1). 



Things To Consider (cont’d) 

 There are no decreasing strips in , for: 

 

  = 0  1  2  5  6  7  3  4  8    b( ) = 3 

 • (6,7) = 0  1  2  5  6  7  4  3  8    b( ) = 3  

 (6,7) does not change the # of breakpoints 

 (6,7) creates a decreasing strip thus 
guaranteeing that the next step will decrease 
the # of breakpoints. 



ImprovedBreakpointReversalSort 

ImprovedBreakpointReversalSort( ) 
1 while b( ) > 0 
2     if  has a decreasing strip 
3    Among all possible reversals, choose reversal   

                              that   minimizes b(  • ) 

4     else 
5        Choose a reversal  that flips an increasing strip in 

6      • 
7      output 
8  return 



 ImprovedBreakPointReversalSort is an 

approximation algorithm with a performance 

guarantee of at most 4 

 It eliminates at least one breakpoint in every two 

steps;  at most 2b( ) steps 

 Approximation ratio: 2b( )  / d( ) 

 Optimal algorithm eliminates at most 2 

breakpoints in every step: d( )  b( ) / 2 

 Performance guarantee: 

 ( 2b( ) / d( ) )  [ 2b( ) / (b( ) / 2) ] =  4 

ImprovedBreakpointReversalSort: 

Performance Guarantee  



GRAPHS 



Breakpoint Graph 

1) Represent the elements of the permutation π = 2 3 1 4 6 5 

as vertices in a graph (ordered along a line) 

    0           2            3           1          4            6           5            7 

2) Connect vertices in order given by π with black edges (black 

path) 

3) Connect vertices in order given by 1 2 3 4 5 6 with grey 

edges  (grey path) 

4)    Superimpose black and grey paths 



Two Equivalent Representations of the 

Breakpoint Graph 

    0           2            3           1          4            6           5            7 

    0           1            2           3          4            5           6            7 

• Consider the following Breakpoint Graph 

• If we line up the gray path  (instead of black path) on a horizontal 

line, then we would get the following graph 

• Although they may look different, these two graphs are the same 



What is the Effect of the Reversal ? 

    0           1            2           3          4            5           6            7 

    0           1            2           3          4            5           6            7 

• The gray paths stayed the same for both graphs 

• There is a change in the graph at this point 

• There is another change at this point 

How does a reversal change the breakpoint graph?   

Before: 0 2 3 1 4 6 5 7 

After:   0 2 3 5 6 4 1 7 

• The black edges are unaffected by the reversal so they remain the 

same for both graphs 



A reversal affects 4 edges in the 

breakpoint graph 

    0           1            2           3          4            5           6            7 

• A reversal removes  2 edges (red) and replaces them with 

2 new edges (blue) 



Effects of Reversals 
Case 1:  

Both edges belong to the same cycle 

• Remove the center black edges and replace them with new 

black edges (there are two ways to replace them) 

• (a) After this replacement, there now exists 2 cycles instead of 1 

cycle 

c(πρ) – c(π) = 1 

This is called a proper reversal 

since there’s a cycle increase 

after the reversal. 

• (b) Or after this replacement, there still exists 1 cycle 

c(πρ) – c(π) = 0 
Therefore, after the reversal 

c(πρ) – c(π) = 0 or 1  



Effects of Reversals (Continued) 

Case 2: 

Both edges belong to different cycles 

• Remove the center black edges and replace them with new black 

edges 

• After the replacement, there now exists 1 cycle instead of 2 cycles 

c(πρ) – c(π) = -1 

Therefore, for every 

permutation π and reversal 

ρ, c(πρ) – c(π) ≤ 1 



Identity permutation (n=6) 

    0           1            2           3          4            5           6            7 



Reversal Distance and Maximum Cycle 

Decomposition 

• Since the identity permutation of size n contains the maximum cycle 

decomposition of n+1, c(identity) = n+1 

• c(identity) – c(π) equals the number of cycles that need to be 

“added” to c(π) while transforming π into the identity 

• Based on the previous theorem, at best after each reversal, the 

cycle decomposition could be increased by one, then:                                        

            d(π) = c(identity) – c(π) = n+1 – c(π) 

• Yet, not every reversal can increase the cycle decomposition 

Therefore, d(π) ≥ n+1 – c(π) 



Signed Permutations 

 Up to this point, all permutations to sort were 

unsigned 

 But genes have directions… so we should 

consider signed permutations 

 
 

5’ 3’ 

=    1        -2      - 3     4         -5 



Signed Permutation 

• Genes are directed fragments of DNA and we represent a genome 

by a signed permutation 

• If genes are in the same position but there orientations are 

different, they do not have the equivalent gene order 

• For example, these two permutations have the same order, but 

each gene’s orientation is the reverse; therefore, they are not 

equivalent gene sequences 

        1       2        3        4       5 

        -1       2       -3      -4      -5 



From Signed to Unsigned Permutation 

    0    +3    -5   +8    -6    +4    -7   +9    +2   +1  +10  -11   12 

•      Begin by constructing a normal signed breakpoint graph 

• Redefine each vertex x with the following rules: 

  If vertex x is positive, replace vertex x with vertex 2x-1 and 

vertex 2x in that order 

 

  If vertex x is negative, replace vertex x with vertex 2x and 

vertex 2x-1 in that order 

 

  The extension vertices x = 0 and x = n+1 are kept as it was 

before 

   0    3a    3b  5a  5b    8a  8b     6a   6b 4a   4b   7a   7b   9a   9b    2a   2b    1a  1b  10a  10b 11a 11b 

23 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

 +3        -5        +8         -6       +4         -7        +9        +2        +1      +10       -11 



From Signed to Unsigned Permutation (Continued) 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

• Construct the breakpoint graph as usual 

• Notice the alternating cycles in the graph between every other 

vertex pair 

• Since these cycles came from the same signed vertex, we will not 

be performing any reversal on both pairs at the same time; 

therefore, these cycles can be removed from the graph 



Interleaving Edges 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

• Interleaving edges are grey edges that cross each other 

These 2 grey edges 

interleave 

Example: Edges (0,1) and (18, 19) are interleaving 

• Cycles are interleaving if they have an interleaving 

edge 



Interleaving Graphs 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

• An Interleaving Graph is defined on the set of cycles in the 

Breakpoint graph and are connected by edges where cycles are 

interleaved 

A 

B 
C 

E 

F 

   0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23 

A 

B 
C 

E 

F 

D 

D A B 

C 

E F 



Interleaving Graphs (Continued) 

A B 

C 

D E F 

• Oriented cycles are cycles that have the following form 

F 

C 

• Unoriented cycles are cycles that have the following form 

• Mark them on the interleave graph 

E 

• In our example, A, B, D, E are unoriented cycles while C, F 

are oriented cycles 



Hurdles 

• Remove the oriented components from the interleaving graph 

A B 

C 

D E F 

• The following is the breakpoint graph with these oriented 

components removed 

• Hurdles are connected components that do not contain any other 

connected components within it 

A 

B D 

E 

Hurdle 



Reversal Distance with Hurdles 

• Hurdles are obstacles in the genome rearrangement problem 

• They cause a higher number of required reversals for a 

permutation to transform into the identity permutation 

• Taking into account of hurdles, the following formula gives a 

tighter bound on reversal distance: 

d(π) ≥ n+1 – c(π) + h(π) 

• Let h(π) be the number of hurdles in permutation π 


