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Quiz 4 

  g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 

g1 - 11 4 17 2 13 1 13 13.5 9 2 

g2 11 - 9 9.5 13 11 16 1 6.5 2 8.8 

g3 4 9 - 11.2 1 13.4 2 8.1 9.2 6.8 1.4 

g4 17 9.5 11.2 - 18 14 13.6 7.2 9.9 16.5 9.6 

g5 2 13 1 18 - 9 1 6.8 12.1 8.7 3 

g6 13 11 13.4 14 9 - 8.9 13.2 1.1 11.5 9.6 

g7 1 16 2 13.6 1 8.9 - 9.7 10.5 13.2 11.3 

g8 13 1 8.1 7.2 6.8 13.2 9.7 - 9.6 1.6 10.6 

g9 13.5 6.5 9.2 9.9 12.1 1.1 10.5 9.6 - 8.7 12.1 

g10 9 2 6.8 16.5 8.7 11.5 13.2 1.6 8.7 - 9.9 

g11 2 8.8 1.4 9.6 3 9.6 11.3 10.6 12.1 9.9 - 

Given the following distance table, construct its corresponding distance  

graph, and use the CAST algorithm to find the cliques/clusters 

 

Θ = 8 



Quiz 4 

Degree   g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 

4 g1 - 11 4 17 2 13 1 13 13.5 9 2 

3 g2 11 - 9 9.5 13 11 16 1 6.5 2 8.8 

4 g3 4 9 - 11.2 1 13.4 2 8.1 9.2 6.8 1.4 

1 g4 17 9.5 11.2 - 18 14 13.6 7.2 9.9 16.5 9.6 

5 g5 2 13 1 18 - 9 1 6.8 12.1 8.7 3 

1 g6 13 11 13.4 14 9 - 8.9 13.2 1.1 11.5 9.6 

4 g7 1 16 2 13.6 1 8.9 - 9.7 10.5 13.2 11.3 

4 g8 13 1 8.1 7.2 6.8 13.2 9.7 - 9.6 1.6 10.6 

2 g9 13.5 6.5 9.2 9.9 12.1 1.1 10.5 9.6 - 8.7 12.1 

2 g10 9 2 6.8 16.5 8.7 11.5 13.2 1.6 8.7 - 9.9 

4 g11 2 8.8 1.4 9.6 3 9.6 11.3 10.6 12.1 9.9 - 

Given the following distance table, construct its corresponding distance  

graph, and use the CAST algorithm to find the cliques/clusters 

 

Θ = 8 
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C1={g1,g3,g5,g7,g11}  C2={g2,g8,g10}  C3={g6,g9}  C4={g4} 



RNA STRUCTURE 



RNA Basics 

 RNA bases A,C,G,U 

 Canonical Base Pairs 

 A-U 

 G-C 

 G-U 

“wobble” pairing 

 Bases can only pair with 

one other base. 

 

 

2 Hydrogen Bonds 3 Hydrogen Bonds – more stable 



RNA Basics 

 transfer RNA (tRNA) 

 messenger RNA (mRNA) 

 ribosomal RNA (rRNA) 

 small interfering RNA (siRNA) 

 micro RNA (miRNA) 

 small nucleolar RNA (snoRNA) 

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/  

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/


RNA folding  

 Prediction of secondary structure of an RNA 

given its sequence 

 General problem is NP-hard due to “difficult” 

substructures, like pseudoknots 

 Most existing algorithms require too much 

memory (≥O(n2)), and run time (≥O(n3)) thus 

limited to smaller RNA sequences 



RNA Structural Levels 

 

Primary 

AAUCG...CUUCUUCCA 

Primary 

Secondary 
Tertiary 



RNA families 

 Rfam : General non-coding RNA database  

(most of the data is taken from specific 

databases) 

http://www.sanger.ac.uk/Software/Rfam/ 

Includes many families of non coding RNAs  and functional 

Motifs, as well as their alignement and their secondary structures 



RNA Secondary Structure 

Hairpin 

loop 

Junction (Multiloop) 

Bulge Loop 

Single-Stranded 

Interior Loop 

Stem 

Pseudoknot 



Example: 5S rRNA 

E. coli 5S 

120 bases 

T. thermophilus 5S 

120 bases 



Example: E. coli 16S rRNA 

1542 bases 



Example: E. coli 23S rRNA 

2904 bases 



Example: HIV 

9173 bases 

Watts et al., Nature, 2009 



Binary Tree Representation of RNA 

Secondary Structure 
 Representation of  RNA structure 

using Binary tree 

 Nodes represent 

 Base pair if two bases are shown 

 Loop if base and “gap” (dash) are 

shown 

 Pseudoknots still not represented 

 Tree does not permit varying 

sequences 

 Mismatches 

 Insertions & Deletions 

Images – Eddy et al. 



Circular Representation 

Images – David Mount 



Examples of known interactions of 

RNA secondary structural elements 

Pseudoknot 

Kissing hairpins 
Hairpin-bulge 

contact 

These patterns are 

excluded from the 

prediction schemes as 

their computation is too 

intensive. 



Predicting RNA secondary structure 

 Base pair maximization 

 Minimum free energy (most common) 

 Fold, Mfold (Zuker & Stiegler) 

 RNAfold (Hofacker) 

 Multiple sequence alignment 

 Use known structure of RNA with similar 

sequence 

 Covariance 

 Stochastic Context-Free Grammars 



Sequence Alignment as a method 

to determine structure 

 Bases pair in order to form backbones and 
determine the secondary structure 

 Aligning bases based on their ability to pair with 
each other gives an algorithmic approach to 
determining the optimal structure 

 

 



Simplifying Assumptions 

 RNA folds into one minimum free-energy 

structure.  

 There are no knots (base pairs never cross). 

 The energy of a particular base pair in a 

double stranded regions is sequence 

independent 

 Neighbors do not influence the energy. 

 Was solved by dynamic programming, Zuker 

and Stiegler 1981 

 

 



Base Pair Maximization 

U 

C 

C 

A G 

G 

A 

C 

Zuker (1981) Nucleic Acids Research 9(1) 133-149 



Base Pair Maximization – Dynamic 

Programming Algorithm 

 

Simple Example: 

Maximizing Base Pairing 

http://bioalgorithms.info 

S(i,j) is the folding of the subsequence of the RNA 

strand from index i to index j which results in the 

highest number of base pairs 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent 

of overall structure 

 Bifurcation adds extra 

dimension 

Initialize first two 

diagonal arrays to 0 
Fill in squares sweeping 

diagonally 

Images – Sean Eddy 

Bases cannot pair, 
similar 

to unmatched alignment 

S(i, j – 1) 

Bases can pair, similar 

to matched alignment 

S(i + 1, j) 

Dynamic Programming 

–  possible paths S(i + 1, j – 1) +1 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent 

of overall structure 

 Bifurcation adds extra 

dimension 

Initialize first two 

diagonal arrays to 0 
Fill in squares sweeping 

diagonally 

Images – Sean Eddy

Reminder: 

For all k 

 

S(i,k) + S(k + 1, j) 

k = 0 : Bifurcation 

max in this case 

 

S(i,k) + S(k + 1, j) 

Reminder: 

For all k 

 

S(i,k) + S(k + 1, j) 

Bases cannot pair, 
similar 

Bases can pair, similar 

to matched alignment 
Dynamic Programming 

–  possible paths 
Bifurcation – add values 

for all k 



Base Pair Maximization - Drawbacks 

 Base pair maximization will not necessarily 
lead to the most stable structure 

 May create structure with many interior loops or 
hairpins which are energetically unfavorable 

 Comparable to aligning sequences with 
scattered matches – not biologically 
reasonable 



Energy Minimization 

 Thermodynamic Stability 

 Estimated using experimental techniques 

 Theory : Most Stable is the Most likely 

 No Pseudoknots due to algorithm limitations 

 Uses Dynamic Programming alignment technique 

 Attempts to maximize the score taking into account 

thermodynamics 

 MFOLD and ViennaRNA 



Free energy model 

Free energy of a structure is the sum of all 

interactions energies 

Each interaction energy can be calculated thermodynamically  

Free Energy(E)  = E(CG)+E(CG)+….. 



Why is MFE secondary structure 

prediction hard? 

 MFE structure can be found by 
calculating free energy of all possible 
structures 
 

 BUT the number of potential structures 
grows exponentially with the number, n, 
of bases 



RNA folding with Dynamic programming  

(Zuker and Stiegler) 

 W(i,j): MFE structure of substrand from i to j 

i j 

W(i,j) 



RNA folding with dynamic programming 

 Assume a function W(i,j) which is the MFE for the sequence 
starting at i and ending at j (i<j) 

 

 

                             

 

 

 Define scores, for example base pair (CG) =-1 non-pair(CA)=1 
(we want a negative score )   

 Consider 4 possibilities: 

 i,j are a base pair, added to the structure for i+1..j-1 

 i is unpaired, added to the structure for i+1..j 

 j is unpaired, added to the structure for i..j-1 

 i,j are paired, but not to each other;  

 Choose the minimal energy 

i (i+1) 

 

W(i,j) 

(j-1) j 



Energy Minimization Results 

 Linear RNA strand folded back on itself to create secondary 
structure 

 Circularized representation uses this requirement 

 Arcs represent base pairing 

Images – David Mount 

 All loops must have at least 3 bases in them 
 Equivalent to having 3 base pairs between all arcs 

Exception: Location where the beginning and end of RNA come 

together in circularized representation 



Trouble with Pseudoknots 

 Pseudoknots cause a breakdown in the Dynamic 
Programming Algorithm. 

 In order to form a pseudoknot, checks must be made to 
ensure base is not already paired – this breaks down the 
recurrence relations 

Images – David Mount 



Sequence dependent free-energy  
Nearest Neighbor Model 

    U U 
 

C          G  

G          C  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

       

Energy is influenced by the previous base pair 

 (not by the base pairs further down). 



Sequence dependent free-energy 

values of the base pairs  
     U U 

 

C          G  

G          C  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

Example values: 

GC     GC     GC    GC 

AU     GC     CG    UA  

-2.3    -2.9    -3.4   -2.1 

These energies are estimated experimentally from small synthetic RNAs.  

 

 



Adding Complexity to Energy 

Calculations 
 Stacking energy - Assign negative energies to 

these between base pair regions. 

 Energy is influenced by the previous base pair (not by 

the base pairs further down). 

 These energies are estimated experimentally from 

small synthetic RNAs.  

 Positive energy - added for destabilizing regions 

such as bulges, loops, etc. 

 More than one structure can be predicted 



Mfold  

 Positive energy - added for destabilizing 

regions such as bulges, loops, etc. 

 More than one structure can be predicted 



Free energy computation 

       U  U 

A               A 

       G  C 

       G  C 

   A 

       G  C 

       U  A 

       A  U 

       C  G 

       A  U 

    A        3’ 

A 

5’ 

   -0.3 

-0.3 

-1.1 mismatch of hairpin 

-2.9 stacking 

+3.3 1nt bulge -2.9 stacking 

-1.8 stacking 

5’ dangling 

-0.9 stacking 

-1.8 stacking 

-2.1 stacking 

G= -4.6 KCAL/MOL 

+5.9 4 nt loop  



Mfold  

 Positive energy - added for destabilizing 

regions such as bulges, loops, etc. 

 More than one structure can be predicted 



Frey U H et al. Clin Cancer Res 2005;11:5071-5077 

©2005 by American Association for Cancer Research 

More than one structure can be predicted for the  

same RNA 
 



Energy Minimization Drawbacks 

 Compute only one optimal structure 

 Usual drawbacks of purely mathematical 

approaches 

 Similar difficulties in other algorithms 

 Protein structure 

 Exon finding 



RNA fold prediction based on 

Multiple Alignment 

Information from multiple sequence  alignment (MSA)  can 

help to predict the probability of positions i,j to be base-

paired. 

 

 

G  C  C  U  U  C  G  G  G  C 

G  A  C  U  U  C  G  G  U  C 

G  G  C  U  U  C  G  G  C  C 



Compensatory Substitutions 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 

G C 

5’ 

Mutations that maintain the secondary 

structure can help predict the fold 



RNA secondary structure can be revealed by 

identification of compensatory mutations  

G  C  C  U  U  C  G  G  G  C 

G  A  C  U  U  C  G  G  U  C 

G  G  C  U  U  C  G  G  C  C 

  U  C 

U       G 

C       G 

N       N’ 

G       C 



Insight from Multiple Alignment 

Information from multiple sequence  alignment 

(MSA)  can help to predict the 

probability of positions i,j to be base-paired. 

 

 Conservation – no additional information 

 Consistent mutations (GC GU) – support 

stem 

 Inconsistent mutations – does not support 

stem. 

 Compensatory mutations – support stem. 

 



RNAalifold 
 

 Predicts the consensus secondary 

structure for a set of aligned RNA 

sequences by using modified dynamic   

programming algorithm  that add 

alignment information to the standard 

energy model 

 Improvement in prediction accuracy 

 



STOCHASTIC CONTEXT-FREE 

GRAMMARS 



SCFG 

 RNA folding can be represented as context-

free grammars 



unrestricted grammars 

context-sensitive grammars 

context-free grammars 

regular grammars 

(equivalent to finite automata & HMM’s) 

(equivalent to SCFG’s & pushdown automata) 

(equivalent to Turing machines & 

recursively enumerable sets) 

(equivalent to linear 

bounded automata) 

Chomsky hierarchy 

B. Majoros 



A context-free grammar is a generative model denoted by a 4-tuple: 

 

G = (V, , S, R)  

where: 

 

  is a terminal alphabet, (e.g., {a, c, g, u} ) 

 V is a nonterminal alphabet, (e.g., {A, B, C, D, E, ...} ) 

 SV is a special start symbol, and  

 R is a set of rewriting rules called productions. 

 

Productions in R are rules of the form: 

 

X →  

 

where XV, (V)* 

B. Majoros 

Context-free grammars 



The “context-freeness” is imposed by the requirement that 

the l.h.s of each production rule may contain only a single 

symbol, and that symbol must be a nonterminal: 

 

X →  

 

Thus, a CFG cannot specify context-sensitive rules such as: 

 

wXz → wz 

 

Context “freeness” 

B. Majoros 



Suppose a CFG G has generated a terminal string x*. A 

derivation S  *x denotes a possible derivation for generating x.  

 

A derivation (or parse) consists of a series of applications of 

productions from R, beginning with the start symbol S and 

ending with the terminal string x: 
 

S  s1  s2  s3  L  x 

where  si(V)*.  

 

 

We’ll concentrate of leftmost derivations where the leftmost 

nonterminal is always replaced first. 

B. Majoros 

Derivations 



A CFG for an RNA 

 RNA hairpin with 3 bp stem and a 4-base 

loop (GAAA or GCAA) 

S-> aXu | cXg | gXc | uXa 

X-> aYu | cYg | gYc | uYa 

Y-> aZu | cZg | gZc | uZa 

Z->gaaa | gcaa 

R. Shamir & R. Sharan 



Parse trees 

 A representation of a parse of a string by a CFG  

 Root – start nonterminal S  

 Leaves – terminal symbols in the given string  

 Internal nodes - nonterminals  

 The children of an internal node are the productions of 

that nonterminal (left-to-right order  

 

R. Shamir & R. Sharan 



A stochastic context-free grammar (SCFG) is a CFG plus a probability distribution on 

productions: 
 

G = (V, , S, R, Pp)  
 

where Pp : R a ¡, and probabilities are normalized at the level of each l.h.s. symbol X: 

[  Pp(X→)=1 ] 
                                                              XV   X→ 
 

Thus, we can compute the probability of a single derivation S*x by multiplying the 

probabilities for all productions used in the derivation: 
 

 i P(Xi→i) 
 

We can sum over all possible (leftmost) derivations of a given string x to get the 

probability that G will generate x at random: 
 

P(x | G) =  P(Sj
*x | G). 

                                                       j 

B. Majoros 

Stochastic CFG 



As an example, consider G=(VG, , S, RG, PG), for VG={S, L, N}, ={a,c,g,t}, and RG the set 

consisting of: 
S → a S u | u S a | c S g | g S c | L 

 
L → N N N N 

 
N → a | c | g | u 

 
Then the probability of the sequence acguacguacgu is given by: 
 

P(acguacguacgu) = 
 

P( S  aSu  acSgu  acgScgu  acguSacgu  

acguLacgu  acguNNNNacgu  acguaNNNacgu  

acguacNNacgu  acguacgNacgu  acguacguacgu) = 
 

0.2  0.2  0.2  0.2  0.2  1  0.25  0.25  0.25  0.25 =  1.25 10-6 

 

because this sequence has only one possible (leftmost) derivation under grammar G. 

(P=0.2) 
 

(P=1.0) 
 

(P=0.25) 

B. Majoros 

An example 



acuSag 

Structure using SFCG 

 Grammar rules with associated probabilities 

S  aSu | cSg | aS | uS | … | Su | SS | ε 
 P         .21    .15      .11    .08           .03    .22    .02 

S 
aS 
acSg 

acuSuag 
acugScuag 
acuguScuag 
acuguaScuag 
acuguauScuag 
acuguaucuag 

acuguaucuag 

.(((...).)) 

 Let’s generate a structure for the sequence 

acuguaucuag 

acuguacuag 

.(((..).)) 

acugucuag 

.(((.).)) 

acugcuag 

.((().)) 

acuuag 

.((.)) 

acuag 

.(()) 

acg 

.() 

a 

. 

 We select the set of transformations that highest probability 

of generating the input sequence. This set gives us our 

structure. 



Non-CNF: 

 

S → a S t | t S a | c S g | g S c | L 

L → N N N N 

N → a | c | g | u 

 

CNF: 

 

S → A ST | T SA | C SG | G SC | N L1  

SA → S A 

ST → S T 

SC → S C 

SG → S G 

L1 → N L2 

L2 → N N 

N → a | c | g | u 

A → a 

C → c 

G → g 

T → u 

Chomsky Normal Form 
A CNF grammar is one in which all productions are of the form: 

X → Y Z 

or: 

X → a 

B. Majoros 



Two questions for a CFG: 

 

1) Can a grammar G derive string x? 

2) If so, what series of productions would be used during 

the derivation? (there may be multiple answers!) 

 

Additional questions for an SCFG: 

 

1) What is the probability that G derives string x? 

2) What is the most probable derivation of x via G? 
 

B. Majoros 

Parsing CFG 



Parsing CFG 

 CYK Algorithm (Cocke-Younger-Kasami) 

 Dynamic Programming method 

 Modified CYK for SCFG 

 “Inside algorithm” 

 Training similar to HMM 

 If parses are known for training data sequences, simply 

count the number of times for each production, calculate 

probabilities (labeled sequence training for HMM) 

 If parses are not known, apply an EM algorithm called 

“Inside-Outside” (“forward-backward” for HMM) 


