CS481: Bioinformatics Algorithms

> Can Alkan EA224 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Given the following distance table, construct its corresponding distance graph, and use the CAST algorithm to find the cliques/clusters

	g1	g2	g3	g4	g5	g6	g7	g8	g9	g10	g11
g1	-	11	4	17	2	13	1	13	13.5	9	2
g2	11	-	9	9.5	13	11	16	1	6.5	2	8.8
g3	4	9	-	11.2	1	13.4	2	8.1	9.2	6.8	1.4
g4	17	9.5	11.2	-	18	14	13.6	7.2	9.9	16.5	9.6
g5	2	13	1	18	_	9	1	6.8	12.1	8.7	3
g6	13	11	13.4	14	9	-	8.9	13.2	1.1	11.5	9.6
g7	1	16	2	13.6	1	8.9	-	9.7	10.5	13.2	11.3
g8	13	1	8.1	7.2	6.8	13.2	9.7	-	9.6	1.6	10.6
g9	13.5	6.5	9.2	9.9	12.1	1.1	10.5	9.6	-	8.7	12.1
g10	9	2	6.8	16.5	8.7	11.5	13.2	1.6	8.7	-	9.9
g11	2	8.8	1.4	9.6	3	9.6	11.3	10.6	12.1	9.9	-

 $\Theta = 8$

Given the following distance table, construct its corresponding distance graph, and use the CAST algorithm to find the cliques/clusters

Degree		g1	g2	g3	g4	g5	g6	g7	g8	g9	g10	g11
4	g1	-	11	4	17	2	13	1	13	13.5	9	2
3	g2	11	-	9	9.5	13	11	16	1	6.5	2	8.8
4	g3	4	9	-	11.2	1	13.4	2	8.1	9.2	6.8	1.4
1	g4	17	9.5	11.2	-	18	14	13.6	7.2	9.9	16.5	9.6
5	g5	2	13	1	18	-	9	1	6.8	12.1	8.7	3
1	g6	13	11	13.4	14	9	-	8.9	13.2	1.1	11.5	9.6
4	g7	1	16	2	13.6	1	8.9	-	9.7	10.5	13.2	11.3
4	g8	13	1	8.1	7.2	6.8	13.2	9.7	-	9.6	1.6	10.6
2	g9	13.5	6.5	9.2	9.9	12.1	1.1	10.5	9.6	-	8.7	12.1
2	g10	9	2	6.8	16.5	8.7	11.5	13.2	1.6	8.7	-	9.9
4	g11	2	8.8	1.4	9.6	3	9.6	11.3	10.6	12.1	9.9	-

 $\Theta = 8$

Quiz 4

 $C1=\{g1,g3,g5,g7,g11\}$ $C2=\{g2,g8,g10\}$ $C3=\{g6,g9\}$ $C4=\{g4\}$

RNA STRUCTURE

RNA Basics

- RNA bases A,C,G,U
- Canonical Base Pairs
 - A-U
 - G-C
 - G-U

"wobble" pairing

Bases can only pair with one other base.

3 Hydrogen Bonds – more stable

RNA Basics

- transfer RNA (tRNA)
- messenger RNA (mRNA)
- ribosomal RNA (rRNA)
- small interfering RNA (siRNA)
- micro RNA (miRNA)
- small nucleolar RNA (snoRNA)

RNA folding

- Prediction of secondary structure of an RNA given its sequence
- General problem is NP-hard due to "difficult" substructures, like pseudoknots
- Most existing algorithms require too much memory (≥O(n²)), and run time (≥O(n³)) thus limited to smaller RNA sequences

RNA Structural Levels

AAUCG....CUUCUUCCA Primary

Secondary

Tertiary

Rfam : General non-coding RNA database (most of the data is taken from specific databases)

http://www.sanger.ac.uk/Software/Rfam/

Includes many families of non coding RNAs and functional Motifs, as well as their alignement and their secondary structures

RNA Secondary Structure

Example: 5S rRNA

Example: E. coli 16S rRNA

1542 bases

Example: E. coli 23S rRNA

tat end

9173 bases

Watts et al., Nature, 2009

Binary Tree Representation of RNA Secondary Structure

- Representation of RNA structure using Binary tree
- Nodes represent
 - Base pair if two bases are shown
 - Loop if base and "gap" (dash) are shown
- Pseudoknots still not represented
- Tree does not permit varying sequences
 - Mismatches
 - Insertions & Deletions

Images – Eddy et al.

Circular Representation

Images – David Mount

Examples of known interactions of RNA secondary structural elements

Predicting RNA secondary structure

- Base pair maximization
- Minimum free energy (most common)
 Fold Mfold (Zukor & Stiegler)
 - Fold, Mfold (Zuker & Stiegler)
 - RNAfold (Hofacker)
- Multiple sequence alignment
 - Use known structure of RNA with similar sequence
- Covariance
- Stochastic Context-Free Grammars

Sequence Alignment as a method to determine structure

- Bases pair in order to form backbones and determine the secondary structure
- Aligning bases based on their ability to pair with each other gives an algorithmic approach to determining the optimal structure

Simplifying Assumptions

- RNA folds into one minimum free-energy structure.
- There are no knots (base pairs never cross).
- The energy of a particular base pair in a double stranded regions is sequence independent
 - Neighbors do not influence the energy.
- Was solved by dynamic programming, Zuker and Stiegler 1981

Base Pair Maximization

Base Pair Maximization – Dynamic Programming Algorithm

S(i,j) is the folding of the subsequence of the RNA strand from index i to index j which results in the highest number of base pairs

$$S(i,j) = \max \begin{cases} S(i+1,j-1) + 1 & [\text{if } i,j \text{ base pair}] \\ S(i+1,j) \\ S(i,j-1) \\ \max_{i < k < j} S(i,k) + S(k+1,j) \end{cases}$$

http://bioalgorithms.info

Base Pair Maximization – Dynamic Programming Algorithm

- Alignment Method
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Images – Sean Eddy

Base Pair Maximization – Dynamic Programming Algorithm

- Alignment Method
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Base Pair Maximization - Drawbacks

- Base pair maximization will not necessarily lead to the most stable structure
 - May create structure with many interior loops or hairpins which are energetically unfavorable
- Comparable to aligning sequences with scattered matches – not biologically reasonable

Energy Minimization

- Thermodynamic Stability
 - Estimated using experimental techniques
 - □ Theory : Most Stable is the Most likely
- No Pseudoknots due to algorithm limitations
- Uses Dynamic Programming alignment technique
- Attempts to maximize the score taking into account thermodynamics
- MFOLD and ViennaRNA

Free energy model

Free energy of a structure is the sum of all interactions energies

Free Energy(E) = E(CG)+E(CG)+....

Each interaction energy can be calculated thermodynamically

Why is MFE secondary structure prediction hard?

- MFE structure can be found by calculating free energy of all possible structures
- BUT the number of potential structures grows exponentially with the number, n, of bases

RNA folding with Dynamic programming (Zuker and Stiegler)

W(i,j): MFE structure of substrand from i to j

RNA folding with dynamic programming

 Assume a function W(i,j) which is the MFE for the sequence starting at i and ending at j (i<j)

- Define scores, for example base pair (CG) =-1 non-pair(CA)=1 (we want a negative score)
- Consider 4 possibilities:
 - □ i,j are a base pair, added to the structure for *i*+1..*j*-1
 - □ i is unpaired, added to the structure for *i*+1..*j*
 - □ j is unpaired, added to the structure for *i..j*-1
 - □ i,j are paired, but not to each other;
- Choose the minimal energy

Energy Minimization Results

All loops must have at least 3 bases in them Equivalent to having 3 base pairs between all arcs

Exception: Location where the beginning and end of RNA come together in circularized representation

Images – David Mount

Trouble with Pseudoknots

- Pseudoknots cause a breakdown in the Dynamic Programming Algorithm.
- In order to form a pseudoknot, checks must be made to ensure base is not already paired – this breaks down the recurrence relations

Sequence dependent free-energy Nearest Neighbor Model

Energy is influenced by the previous base pair (not by the base pairs further down).

Sequence dependent free-energy values of the base pairs

These energies are estimated experimentally from small synthetic RNAs.

Example values: GC GC GC GC AU GC CG UA -2.3 -2.9 -3.4 -2.1

Adding Complexity to Energy Calculations

- Stacking energy Assign negative energies to these between base pair regions.
 - Energy is influenced by the previous base pair (not by the base pairs further down).
 - These energies are estimated experimentally from small synthetic RNAs.
- Positive energy added for destabilizing regions such as bulges, loops, etc.
- More than one structure can be predicted

Mfold

- Positive energy added for destabilizing regions such as bulges, loops, etc.
- More than one structure can be predicted

Free energy computation

Mfold

- Positive energy added for destabilizing regions such as bulges, loops, etc.
- More than one structure can be predicted

More than one structure can be predicted for the same RNA

Frey U H et al. Clin Cancer Res 2005;11:5071-5077

Energy Minimization Drawbacks

- Compute only one optimal structure
- Usual drawbacks of purely mathematical approaches
 - Similar difficulties in other algorithms
 - Protein structure
 - Exon finding

RNA fold prediction based on Multiple Alignment

Information from multiple sequence alignment (MSA) can help to predict the probability of positions i,j to be basepaired.

Compensatory Substitutions

Mutations that maintain the secondary structure can help predict the fold

RNA secondary structure can be revealed by identification of compensatory mutations

Insight from Multiple Alignment

Information from multiple sequence alignment (MSA) can help to predict the probability of positions i,j to be base-paired.

- Conservation no additional information
- Consistent mutations (GC→ GU) support stem
- Inconsistent mutations does not support stem.
- Compensatory mutations support stem.

RNAalifold

- Predicts the consensus secondary structure for a set of aligned RNA sequences by using modified dynamic programming algorithm that add alignment information to the standard energy model
- Improvement in prediction accuracy

STOCHASTIC CONTEXT-FREE GRAMMARS

SCFG

 RNA folding can be represented as contextfree grammars Chomsky hierarchy

(equivalent to linear bounded automata)

(equivalent to Turing machines & recursively enumerable sets)

-unrestricted grammars

context-sensitive grammars-

- context-free grammars

regular grammars

(equivalent to finite automata & HMM's)

(equivalent to SCFG's & pushdown automata)

Context-free grammars

A *context-free grammar* is a generative model denoted by a 4-tuple:

 $G = (V, \alpha, S, R)$

where:

 α is a terminal alphabet, (e.g., $\{a, c, g, u\}$) V is a nonterminal alphabet, (e.g., $\{A, B, C, D, E, ...\}$) $S \in V$ is a special start symbol, and R is a set of rewriting rules called productions.

Productions in *R* are rules of the form:

 $X \rightarrow \lambda$

where $X \in V$, $\lambda \in (V \cup \alpha)^*$

Context "freeness"

The "*context-freeness*" is imposed by the requirement that the l.h.s of each production rule may contain only a <u>single</u> symbol, and that symbol must be a <u>nonterminal</u>:

$X \rightarrow \lambda$

Thus, a CFG <u>cannot</u> specify *context-sensitive* rules such as:

 $wXz \rightarrow w\lambda z$

Derivations

Suppose a CFG *G* has generated a *terminal string* $x \in \alpha^*$. A *derivation* $S \implies *x$ denotes a possible derivation for generating *x*.

A *derivation* (or *parse*) consists of a series of applications of productions from *R*, beginning with the *start symbol S* and ending with the *terminal string x*:

$$S \Longrightarrow s_1 \Longrightarrow s_2 \Longrightarrow s_3 \Longrightarrow \cdots \Longrightarrow x$$

where $s_i \in (V \cup \alpha)^*$.

We'll concentrate of leftmost derivations where the leftmost nonterminal is always replaced first.

A CFG for an RNA

RNA hairpin with 3 bp stem and a 4-base loop (GAAA or GCAA)

seq1	seq2	seq3	
AA	CA	CA	CAGGAAACUGseql
G A	G A	G A	GCUGCAAAGC seq2
G•C	U•A	U×C	GCUGCAACUG seg3
A • U	C•G	C×U	
C•G	G•C	G×G	

S-> aXu | cXg | gXc | uXa X-> aYu | cYg | gYc | uYa Y-> aZu | cZg | gZc | uZa Z->gaaa | gcaa

R. Shamir & R. Sharan

Parse trees

- A representation of a parse of a string by a CFG
- Root start nonterminal S
- Leaves terminal symbols in the given string
- Internal nodes nonterminals
- The children of an internal node are the productions of that nonterminal (left-to-right order

R. Shamir & R. Sharan

Stochastic CFG

A *stochastic context-free grammar* (*SCFG*) is a CFG plus a probability distribution on productions:

 $G = (V, \alpha, S, R, P_p)$

where P_p : *R* **a**_i, and probabilities are normalized at the level of each l.h.s. symbol *X*:

$$\forall \left[\sum P_p(X \rightarrow \lambda) = 1 \right]$$

Thus, we can compute the probability of a single derivation $S \Rightarrow^* x$ by multiplying the probabilities for all productions used in the derivation:

$$\prod_i P(X_i \to \lambda_i)$$

We can sum over all possible (leftmost) derivations of a given string x to get the probability that G will generate x at random:

$$P(\underset{j}{x} \mid G) = \sum P(S \Longrightarrow_{j}^{*} x \mid G).$$

An example

As an example, consider $G=(V_G, \alpha, S, R_G, P_G)$, for $V_G=\{S, L, N\}$, $\alpha=\{a, c, g, t\}$, and R_G the set consisting of:

 $S \rightarrow a S u | u S a | c S g | g S c | L \quad (P=0.2)$ $L \rightarrow N N N N \qquad (P=1.0)$ $N \rightarrow a | c | g | u \qquad (P=0.25)$

Then the probability of the sequence acguacguacgu is given by:

P(acguacguacgu) = $P(S \Rightarrow aSu \Rightarrow acSgu \Rightarrow acgScgu \Rightarrow acguSacgu \Rightarrow$ $acguLacgu \Rightarrow acguNNNAcgu \Rightarrow acguaNNNacgu \Rightarrow$ $acguacNNacgu \Rightarrow acguacgNacgu \Rightarrow acguacguacgu) =$ $0.2 \quad 0.2 \quad 0.2 \quad 0.2 \quad 0.2 \quad 1 \quad 0.25 \quad 0.25 \quad 0.25 = 1.25 \quad 10^{-6}$

because this sequence has only one possible (leftmost) derivation under grammar G.

Structure using SFCG

Grammar rules with associated probabilities

$$S \rightarrow aSu | cSg | aS | uS | ... | Su | SS | \epsilon$$

 P .21 .15 .11 .08 .03 .22 .02

- We select the set of transformations that highest probability of generating the input sequence. This set gives us our structure.
- Let's generate a structure for the sequence acuguaucuag

Chomsky Normal	Form					
A CNF grammar is one in white X	A CNF grammar is one in which all productions are of the form: $X \rightarrow YZ$ or: $X \rightarrow a$					
Non-CNF:	CNF:					
$S \rightarrow aSt tSa cSg gSc L$ $L \rightarrow NNNN$ $N \rightarrow a c g u$	$S \rightarrow A S_T T S_A C S_G G S_C N L_1$ $S_A \rightarrow S A$ $S_T \rightarrow S T$ $S_C \rightarrow S C$ $S_G \rightarrow S G$ $L_1 \rightarrow N L_2$ $L_2 \rightarrow N N$ $N \rightarrow a c g u$ $A \rightarrow a$ $C \rightarrow c$ $G \rightarrow g$ $T \rightarrow u$					

Parsing CFG

Two questions for a CFG:

- 1) Can a grammar *G* derive string *x*?
- 2) If so, what series of productions would be used during the derivation? *(there may be multiple answers!)*

Additional questions for an SCFG:

What is the *probability* that *G* derives string *x*?
 What is the *most probable* derivation of *x* via *G*?

Parsing CFG

- CYK Algorithm (Cocke-Younger-Kasami)
 - Dynamic Programming method
- Modified CYK for SCFG
 - "Inside algorithm"
 - Training similar to HMM
 - If parses are known for training data sequences, simply count the number of times for each production, calculate probabilities (labeled sequence training for HMM)
 - If parses are not known, apply an EM algorithm called "Inside-Outside" ("forward-backward" for HMM)