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Quiz 4 

  g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 

g1 - 11 4 17 2 13 1 13 13.5 9 2 

g2 11 - 9 9.5 13 11 16 1 6.5 2 8.8 

g3 4 9 - 11.2 1 13.4 2 8.1 9.2 6.8 1.4 

g4 17 9.5 11.2 - 18 14 13.6 7.2 9.9 16.5 9.6 

g5 2 13 1 18 - 9 1 6.8 12.1 8.7 3 

g6 13 11 13.4 14 9 - 8.9 13.2 1.1 11.5 9.6 

g7 1 16 2 13.6 1 8.9 - 9.7 10.5 13.2 11.3 

g8 13 1 8.1 7.2 6.8 13.2 9.7 - 9.6 1.6 10.6 

g9 13.5 6.5 9.2 9.9 12.1 1.1 10.5 9.6 - 8.7 12.1 

g10 9 2 6.8 16.5 8.7 11.5 13.2 1.6 8.7 - 9.9 

g11 2 8.8 1.4 9.6 3 9.6 11.3 10.6 12.1 9.9 - 

Given the following distance table, construct its corresponding distance  

graph, and use the CAST algorithm to find the cliques/clusters 

 

Θ = 8 



Quiz 4 

Degree   g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 

4 g1 - 11 4 17 2 13 1 13 13.5 9 2 

3 g2 11 - 9 9.5 13 11 16 1 6.5 2 8.8 

4 g3 4 9 - 11.2 1 13.4 2 8.1 9.2 6.8 1.4 

1 g4 17 9.5 11.2 - 18 14 13.6 7.2 9.9 16.5 9.6 

5 g5 2 13 1 18 - 9 1 6.8 12.1 8.7 3 

1 g6 13 11 13.4 14 9 - 8.9 13.2 1.1 11.5 9.6 

4 g7 1 16 2 13.6 1 8.9 - 9.7 10.5 13.2 11.3 

4 g8 13 1 8.1 7.2 6.8 13.2 9.7 - 9.6 1.6 10.6 

2 g9 13.5 6.5 9.2 9.9 12.1 1.1 10.5 9.6 - 8.7 12.1 

2 g10 9 2 6.8 16.5 8.7 11.5 13.2 1.6 8.7 - 9.9 

4 g11 2 8.8 1.4 9.6 3 9.6 11.3 10.6 12.1 9.9 - 

Given the following distance table, construct its corresponding distance  

graph, and use the CAST algorithm to find the cliques/clusters 

 

Θ = 8 
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C1={g1,g3,g5,g7,g11}  C2={g2,g8,g10}  C3={g6,g9}  C4={g4} 



RNA STRUCTURE 



RNA Basics 

 RNA bases A,C,G,U 

 Canonical Base Pairs 

 A-U 

 G-C 

 G-U 

“wobble” pairing 

 Bases can only pair with 

one other base. 

 

 

2 Hydrogen Bonds 3 Hydrogen Bonds – more stable 



RNA Basics 

 transfer RNA (tRNA) 

 messenger RNA (mRNA) 

 ribosomal RNA (rRNA) 

 small interfering RNA (siRNA) 

 micro RNA (miRNA) 

 small nucleolar RNA (snoRNA) 

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/  

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/


RNA folding  

 Prediction of secondary structure of an RNA 

given its sequence 

 General problem is NP-hard due to “difficult” 

substructures, like pseudoknots 

 Most existing algorithms require too much 

memory (≥O(n2)), and run time (≥O(n3)) thus 

limited to smaller RNA sequences 



RNA Structural Levels 

 

Primary 

AAUCG...CUUCUUCCA 

Primary 

Secondary 
Tertiary 



RNA families 

 Rfam : General non-coding RNA database  

(most of the data is taken from specific 

databases) 

http://www.sanger.ac.uk/Software/Rfam/ 

Includes many families of non coding RNAs  and functional 

Motifs, as well as their alignement and their secondary structures 



RNA Secondary Structure 

Hairpin 

loop 

Junction (Multiloop) 

Bulge Loop 

Single-Stranded 

Interior Loop 

Stem 

Pseudoknot 



Example: 5S rRNA 

E. coli 5S 

120 bases 

T. thermophilus 5S 

120 bases 



Example: E. coli 16S rRNA 

1542 bases 



Example: E. coli 23S rRNA 

2904 bases 



Example: HIV 

9173 bases 

Watts et al., Nature, 2009 



Binary Tree Representation of RNA 

Secondary Structure 
 Representation of  RNA structure 

using Binary tree 

 Nodes represent 

 Base pair if two bases are shown 

 Loop if base and “gap” (dash) are 

shown 

 Pseudoknots still not represented 

 Tree does not permit varying 

sequences 

 Mismatches 

 Insertions & Deletions 

Images – Eddy et al. 



Circular Representation 

Images – David Mount 



Examples of known interactions of 

RNA secondary structural elements 

Pseudoknot 

Kissing hairpins 
Hairpin-bulge 

contact 

These patterns are 

excluded from the 

prediction schemes as 

their computation is too 

intensive. 



Predicting RNA secondary structure 

 Base pair maximization 

 Minimum free energy (most common) 

 Fold, Mfold (Zuker & Stiegler) 

 RNAfold (Hofacker) 

 Multiple sequence alignment 

 Use known structure of RNA with similar 

sequence 

 Covariance 

 Stochastic Context-Free Grammars 



Sequence Alignment as a method 

to determine structure 

 Bases pair in order to form backbones and 
determine the secondary structure 

 Aligning bases based on their ability to pair with 
each other gives an algorithmic approach to 
determining the optimal structure 

 

 



Simplifying Assumptions 

 RNA folds into one minimum free-energy 

structure.  

 There are no knots (base pairs never cross). 

 The energy of a particular base pair in a 

double stranded regions is sequence 

independent 

 Neighbors do not influence the energy. 

 Was solved by dynamic programming, Zuker 

and Stiegler 1981 

 

 



Base Pair Maximization 

U 

C 

C 

A G 

G 

A 

C 

Zuker (1981) Nucleic Acids Research 9(1) 133-149 



Base Pair Maximization – Dynamic 

Programming Algorithm 

 

Simple Example: 

Maximizing Base Pairing 

http://bioalgorithms.info 

S(i,j) is the folding of the subsequence of the RNA 

strand from index i to index j which results in the 

highest number of base pairs 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent 

of overall structure 

 Bifurcation adds extra 

dimension 

Initialize first two 

diagonal arrays to 0 
Fill in squares sweeping 

diagonally 

Images – Sean Eddy 

Bases cannot pair, 
similar 

to unmatched alignment 

S(i, j – 1) 

Bases can pair, similar 

to matched alignment 

S(i + 1, j) 

Dynamic Programming 

–  possible paths S(i + 1, j – 1) +1 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent 

of overall structure 

 Bifurcation adds extra 

dimension 

Initialize first two 

diagonal arrays to 0 
Fill in squares sweeping 

diagonally 

Images – Sean Eddy

Reminder: 

For all k 

 

S(i,k) + S(k + 1, j) 

k = 0 : Bifurcation 

max in this case 

 

S(i,k) + S(k + 1, j) 

Reminder: 

For all k 

 

S(i,k) + S(k + 1, j) 

Bases cannot pair, 
similar 

Bases can pair, similar 

to matched alignment 
Dynamic Programming 

–  possible paths 
Bifurcation – add values 

for all k 



Base Pair Maximization - Drawbacks 

 Base pair maximization will not necessarily 
lead to the most stable structure 

 May create structure with many interior loops or 
hairpins which are energetically unfavorable 

 Comparable to aligning sequences with 
scattered matches – not biologically 
reasonable 



Energy Minimization 

 Thermodynamic Stability 

 Estimated using experimental techniques 

 Theory : Most Stable is the Most likely 

 No Pseudoknots due to algorithm limitations 

 Uses Dynamic Programming alignment technique 

 Attempts to maximize the score taking into account 

thermodynamics 

 MFOLD and ViennaRNA 



Free energy model 

Free energy of a structure is the sum of all 

interactions energies 

Each interaction energy can be calculated thermodynamically  

Free Energy(E)  = E(CG)+E(CG)+….. 



Why is MFE secondary structure 

prediction hard? 

 MFE structure can be found by 
calculating free energy of all possible 
structures 
 

 BUT the number of potential structures 
grows exponentially with the number, n, 
of bases 



RNA folding with Dynamic programming  

(Zuker and Stiegler) 

 W(i,j): MFE structure of substrand from i to j 

i j 

W(i,j) 



RNA folding with dynamic programming 

 Assume a function W(i,j) which is the MFE for the sequence 
starting at i and ending at j (i<j) 

 

 

                             

 

 

 Define scores, for example base pair (CG) =-1 non-pair(CA)=1 
(we want a negative score )   

 Consider 4 possibilities: 

 i,j are a base pair, added to the structure for i+1..j-1 

 i is unpaired, added to the structure for i+1..j 

 j is unpaired, added to the structure for i..j-1 

 i,j are paired, but not to each other;  

 Choose the minimal energy 

i (i+1) 

 

W(i,j) 

(j-1) j 



Energy Minimization Results 

 Linear RNA strand folded back on itself to create secondary 
structure 

 Circularized representation uses this requirement 

 Arcs represent base pairing 

Images – David Mount 

 All loops must have at least 3 bases in them 
 Equivalent to having 3 base pairs between all arcs 

Exception: Location where the beginning and end of RNA come 

together in circularized representation 



Trouble with Pseudoknots 

 Pseudoknots cause a breakdown in the Dynamic 
Programming Algorithm. 

 In order to form a pseudoknot, checks must be made to 
ensure base is not already paired – this breaks down the 
recurrence relations 

Images – David Mount 



Sequence dependent free-energy  
Nearest Neighbor Model 

    U U 
 

C          G  

G          C  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

       

Energy is influenced by the previous base pair 

 (not by the base pairs further down). 



Sequence dependent free-energy 

values of the base pairs  
     U U 

 

C          G  

G          C  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

Example values: 

GC     GC     GC    GC 

AU     GC     CG    UA  

-2.3    -2.9    -3.4   -2.1 

These energies are estimated experimentally from small synthetic RNAs.  

 

 



Adding Complexity to Energy 

Calculations 
 Stacking energy - Assign negative energies to 

these between base pair regions. 

 Energy is influenced by the previous base pair (not by 

the base pairs further down). 

 These energies are estimated experimentally from 

small synthetic RNAs.  

 Positive energy - added for destabilizing regions 

such as bulges, loops, etc. 

 More than one structure can be predicted 



Mfold  

 Positive energy - added for destabilizing 

regions such as bulges, loops, etc. 

 More than one structure can be predicted 



Free energy computation 

       U  U 

A               A 

       G  C 

       G  C 

   A 

       G  C 

       U  A 

       A  U 

       C  G 

       A  U 

    A        3’ 

A 

5’ 

   -0.3 

-0.3 

-1.1 mismatch of hairpin 

-2.9 stacking 

+3.3 1nt bulge -2.9 stacking 

-1.8 stacking 

5’ dangling 

-0.9 stacking 

-1.8 stacking 

-2.1 stacking 

G= -4.6 KCAL/MOL 

+5.9 4 nt loop  



Mfold  

 Positive energy - added for destabilizing 

regions such as bulges, loops, etc. 

 More than one structure can be predicted 



Frey U H et al. Clin Cancer Res 2005;11:5071-5077 

©2005 by American Association for Cancer Research 

More than one structure can be predicted for the  

same RNA 
 



Energy Minimization Drawbacks 

 Compute only one optimal structure 

 Usual drawbacks of purely mathematical 

approaches 

 Similar difficulties in other algorithms 

 Protein structure 

 Exon finding 



RNA fold prediction based on 

Multiple Alignment 

Information from multiple sequence  alignment (MSA)  can 

help to predict the probability of positions i,j to be base-

paired. 

 

 

G  C  C  U  U  C  G  G  G  C 

G  A  C  U  U  C  G  G  U  C 

G  G  C  U  U  C  G  G  C  C 



Compensatory Substitutions 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 

G C 

5’ 

Mutations that maintain the secondary 

structure can help predict the fold 



RNA secondary structure can be revealed by 

identification of compensatory mutations  

G  C  C  U  U  C  G  G  G  C 

G  A  C  U  U  C  G  G  U  C 

G  G  C  U  U  C  G  G  C  C 

  U  C 

U       G 

C       G 

N       N’ 

G       C 



Insight from Multiple Alignment 

Information from multiple sequence  alignment 

(MSA)  can help to predict the 

probability of positions i,j to be base-paired. 

 

 Conservation – no additional information 

 Consistent mutations (GC GU) – support 

stem 

 Inconsistent mutations – does not support 

stem. 

 Compensatory mutations – support stem. 

 



RNAalifold 
 

 Predicts the consensus secondary 

structure for a set of aligned RNA 

sequences by using modified dynamic   

programming algorithm  that add 

alignment information to the standard 

energy model 

 Improvement in prediction accuracy 

 



STOCHASTIC CONTEXT-FREE 

GRAMMARS 



SCFG 

 RNA folding can be represented as context-

free grammars 



unrestricted grammars 

context-sensitive grammars 

context-free grammars 

regular grammars 

(equivalent to finite automata & HMM’s) 

(equivalent to SCFG’s & pushdown automata) 

(equivalent to Turing machines & 

recursively enumerable sets) 

(equivalent to linear 

bounded automata) 

Chomsky hierarchy 

B. Majoros 



A context-free grammar is a generative model denoted by a 4-tuple: 

 

G = (V, , S, R)  

where: 

 

  is a terminal alphabet, (e.g., {a, c, g, u} ) 

 V is a nonterminal alphabet, (e.g., {A, B, C, D, E, ...} ) 

 SV is a special start symbol, and  

 R is a set of rewriting rules called productions. 

 

Productions in R are rules of the form: 

 

X →  

 

where XV, (V)* 

B. Majoros 

Context-free grammars 



The “context-freeness” is imposed by the requirement that 

the l.h.s of each production rule may contain only a single 

symbol, and that symbol must be a nonterminal: 

 

X →  

 

Thus, a CFG cannot specify context-sensitive rules such as: 

 

wXz → wz 

 

Context “freeness” 

B. Majoros 



Suppose a CFG G has generated a terminal string x*. A 

derivation S  *x denotes a possible derivation for generating x.  

 

A derivation (or parse) consists of a series of applications of 

productions from R, beginning with the start symbol S and 

ending with the terminal string x: 
 

S  s1  s2  s3  L  x 

where  si(V)*.  

 

 

We’ll concentrate of leftmost derivations where the leftmost 

nonterminal is always replaced first. 

B. Majoros 

Derivations 



A CFG for an RNA 

 RNA hairpin with 3 bp stem and a 4-base 

loop (GAAA or GCAA) 

S-> aXu | cXg | gXc | uXa 

X-> aYu | cYg | gYc | uYa 

Y-> aZu | cZg | gZc | uZa 

Z->gaaa | gcaa 

R. Shamir & R. Sharan 



Parse trees 

 A representation of a parse of a string by a CFG  

 Root – start nonterminal S  

 Leaves – terminal symbols in the given string  

 Internal nodes - nonterminals  

 The children of an internal node are the productions of 

that nonterminal (left-to-right order  

 

R. Shamir & R. Sharan 



A stochastic context-free grammar (SCFG) is a CFG plus a probability distribution on 

productions: 
 

G = (V, , S, R, Pp)  
 

where Pp : R a ¡, and probabilities are normalized at the level of each l.h.s. symbol X: 

[  Pp(X→)=1 ] 
                                                              XV   X→ 
 

Thus, we can compute the probability of a single derivation S*x by multiplying the 

probabilities for all productions used in the derivation: 
 

 i P(Xi→i) 
 

We can sum over all possible (leftmost) derivations of a given string x to get the 

probability that G will generate x at random: 
 

P(x | G) =  P(Sj
*x | G). 

                                                       j 

B. Majoros 

Stochastic CFG 



As an example, consider G=(VG, , S, RG, PG), for VG={S, L, N}, ={a,c,g,t}, and RG the set 

consisting of: 
S → a S u | u S a | c S g | g S c | L 

 
L → N N N N 

 
N → a | c | g | u 

 
Then the probability of the sequence acguacguacgu is given by: 
 

P(acguacguacgu) = 
 

P( S  aSu  acSgu  acgScgu  acguSacgu  

acguLacgu  acguNNNNacgu  acguaNNNacgu  

acguacNNacgu  acguacgNacgu  acguacguacgu) = 
 

0.2  0.2  0.2  0.2  0.2  1  0.25  0.25  0.25  0.25 =  1.25 10-6 

 

because this sequence has only one possible (leftmost) derivation under grammar G. 

(P=0.2) 
 

(P=1.0) 
 

(P=0.25) 

B. Majoros 

An example 



acuSag 

Structure using SFCG 

 Grammar rules with associated probabilities 

S  aSu | cSg | aS | uS | … | Su | SS | ε 
 P         .21    .15      .11    .08           .03    .22    .02 

S 
aS 
acSg 

acuSuag 
acugScuag 
acuguScuag 
acuguaScuag 
acuguauScuag 
acuguaucuag 

acuguaucuag 

.(((...).)) 

 Let’s generate a structure for the sequence 

acuguaucuag 

acuguacuag 

.(((..).)) 

acugucuag 

.(((.).)) 

acugcuag 

.((().)) 

acuuag 

.((.)) 

acuag 

.(()) 

acg 

.() 

a 

. 

 We select the set of transformations that highest probability 

of generating the input sequence. This set gives us our 

structure. 



Non-CNF: 

 

S → a S t | t S a | c S g | g S c | L 

L → N N N N 

N → a | c | g | u 

 

CNF: 

 

S → A ST | T SA | C SG | G SC | N L1  

SA → S A 

ST → S T 

SC → S C 

SG → S G 

L1 → N L2 

L2 → N N 

N → a | c | g | u 

A → a 

C → c 

G → g 

T → u 

Chomsky Normal Form 
A CNF grammar is one in which all productions are of the form: 

X → Y Z 

or: 

X → a 

B. Majoros 



Two questions for a CFG: 

 

1) Can a grammar G derive string x? 

2) If so, what series of productions would be used during 

the derivation? (there may be multiple answers!) 

 

Additional questions for an SCFG: 

 

1) What is the probability that G derives string x? 

2) What is the most probable derivation of x via G? 
 

B. Majoros 

Parsing CFG 



Parsing CFG 

 CYK Algorithm (Cocke-Younger-Kasami) 

 Dynamic Programming method 

 Modified CYK for SCFG 

 “Inside algorithm” 

 Training similar to HMM 

 If parses are known for training data sequences, simply 

count the number of times for each production, calculate 

probabilities (labeled sequence training for HMM) 

 If parses are not known, apply an EM algorithm called 

“Inside-Outside” (“forward-backward” for HMM) 


