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More on the Motif Problem 

 Exhaustive Search and Median String are 
both exact algorithms 

 

 They always find the optimal solution, though 
they may be too slow to perform practical 
tasks 

 

 Many algorithms sacrifice optimal solution for 
speed 

 



Some Motif Finding Programs 

 CONSENSUS 

 Hertz, Stromo (1989) 

 GibbsDNA 

 Lawrence et al (1993) 

 MEME 

Bailey, Elkan (1995) 

 RandomProjections 

Buhler, Tompa (2002) 

 

 

 

 MULTIPROFILER 

Keich, Pevzner (2002) 

 MITRA 

    Eskin, Pevzner (2002) 

 Pattern Branching 

 Price, Pevzner (2003) 

 

 



CONSENSUS: Greedy Motif Search 

 Find two closest l-mers in sequences 1 and 2 and forms  

     2 x l  alignment matrix with Score(s,2,DNA) 

 At each of the following t-2 iterations CONSENSUS finds a “best” 
l-mer in sequence i from the perspective of the already 
constructed (i-1) x l alignment matrix for the first (i-1) sequences 

 In other words, it finds an l-mer in sequence i maximizing  

    

                                    Score(s,i,DNA)  

 

     under the assumption that the first (i-1) l-mers have been already 
chosen  

 CONSENSUS sacrifices optimal solution for speed:  in fact the 
bulk of the time is actually spent locating the first 2 l-mers 

 



EXACT STRING MATCHING 

Eileen Kraemer 



The problem of String Matching 

 

Given a string ‘t’, the problem of string 

matching deals with finding whether a pattern 

‘p’ occurs in ‘t’ and if ‘p’ does occur then 

returning position in ‘t’ where ‘p’ occurs. 



Brute force (O(mn)) 

n <- |t| 

m <- |p| 

i <= 1 

while i < n 

  if p == t[i, i+m-1] 

     return i; 

  else  

     i = i + 1; 



SimpleStringSearch 
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Straightforward string searching 

 Worst case: 
 Pattern string always matches completely except for last 

character 

 Example: search for XXXXXXY in target string of 
XXXXXXXXXXXXXXXXXXXX 

 Outer loop executed once for every character in target 
string 

 Inner loop executed once for every character in pattern 

 O(mn), where m = |p| and n = |t| 

 Okay if patterns are short, but better algorithms 
exist 



Knuth-Morris-Pratt 

 O(m+n) 

 Key idea: 

  if pattern fails to match, slide pattern to right by 

as many boxes as possible without permitting a 

match to go unnoticed 



The KMP Algorithm - Motivation 

 Knuth-Morris-Pratt’s algorithm 

compares the pattern to the 

text in left-to-right, but shifts 

the pattern more intelligently 

than the brute-force algorithm.  

 When a mismatch occurs, 

what is the most we can shift 

the pattern so as to avoid 

redundant comparisons? 

 Answer: the largest prefix of 

P[0..j] that is a suffix of P[1..j] 

x 

j 

. . a b a a b . . . . . 

a b a a b a 

a b a a b a 

No need to 

repeat these 

comparisons 

Resume 

comparing 

here 



KMP Failure Function 

 Knuth-Morris-Pratt’s 

algorithm preprocesses the 

pattern to find matches of 

prefixes of the pattern with 

the pattern itself 

 The failure function F(j) is 

defined as the size of the 

largest prefix of P[0..j] that is 

also a suffix of P[1..j] 

 Knuth-Morris-Pratt’s 

algorithm modifies the brute-

force algorithm so that if a 

mismatch occurs at P[j] T[i] 

we set  j  F(j  1) 

j 0 1 2 3 4  

P[j] a b a a b a 

F(j) 0 0 1 1 2  

x

j

. . a b a a b . . . . .

a b a a b a

F(j 1)

a b a a b a



The KMP Algorithm 

 The failure function can be 

represented by an array and 

can be computed in O(m) time 

 At each iteration of the while-

loop, either 

 i increases by one, or 

 the shift amount i  j increases 

by at least one (observe that 

F(j  1) < j) 

 Hence, there are no more 

than 2n iterations of the while-

loop 

 Thus, KMP’s algorithm runs in 

optimal time O(m  n) 

Algorithm KMPMatch(T, P) 

 F  failureFunction(P) 
 i  0 
 j  0 
 while i  n 

 if T[i]  P[j] 
  if  j  m  1 
   return  i  j { match } 
  else 
   i  i  1 
   j  j  1 
 else 
  if  j  0 
   j  F[j  1] 
  else 
   i  i  1 
return  1 { no match } 



Computing the Failure Function 

 The failure function can be 

represented by an array and 

can be computed in O(m) time 

 The construction is similar to 

the KMP algorithm itself 

 At each iteration of the while-

loop, either 

 i increases by one, or 

 the shift amount i  j increases 

by at least one (observe that 

F(j  1) < j) 

 Hence, there are no more 

than 2m iterations of the while-

loop 

Algorithm failureFunction(P) 

 F[0]  0 
 i  1 
 j  0 
 while i  m 

 if P[i]  P[j] 
 {we have matched j + 1 chars} 
  F[i]   j + 1 
  i  i  1 
  j  j  1 
 else if  j  0 then 
 {use failure function to shift P} 
  j  F[j  1] 
 else 
  F[i]  0 { no match } 
  i  i  1 



Example 

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4  

P[j] a b a c a b 

F(j) 0 0 1 0 1  



The Boyer-Moore Algorithm 

 Similar to KMP in that: 

 Pattern compared against target 

 On mismatch, move as far to right as possible 

 Different from KMP in that: 

 Compare the patterns from right to left instead of 
left to right 

 Does that make a difference? 

 Yes – much faster on long targets; many 
characters in target string are never examined at 
all 



Boyer-Moore example 

t[0]       t[1]        t[2]       t[3]       t[4]       t[5]      t[6]       t[7]      t[8]       t[9]       t10] 

A B C E F G A B C D E 

 A B C D 

p[0]       p[1]      p[2]      p[3] 

 N 

There is no E in the pattern : thus the pattern can’t match if any characters 

lie under t[3].  So, move four boxes to the right. 



Boyer-Moore example 

t[0]       t[1]        t[2]       t[3]       t[4]       t[5]      t[6]       t[7]      t[8]       t[9]       t10] 

A B C E F G A B C D E 

 A B C D 

p[0]       p[1]      p[2]      p[3] 

 N 

Again, no match.  But there is a B in the pattern.  So move two boxes to 

the right. 



Boyer-Moore example 

t[0]       t[1]        t[2]       t[3]       t[4]       t[5]      t[6]       t[7]      t[8]       t[9]       t10] 

A B C E F G A B C D E 

 A B C D 

p[0]       p[1]      p[2]      p[3] 

 Y  Y Y Y 



Boyer-Moore : another example 

            t[k]    t[k+1]    …                t[k+i]                                 t[k+m-1] 

      …   c E … R G   

 L E … S D E … R G 

p[0]       p[1]    …       p[i-1]      p[i]     p[i+1]    …                 p[m-1] 

 Y  Y Y Y N 

Problem: determine d, the number of  boxes that the pattern can be 

moved to the right. 

d should be smallest integer such that t[k+m-1]= p[m-1-d], t[k+m-2] = 

p[m-2-d], … t[k+i] = p[i-d] 



The Boyer-Moore Algorithm 

 We said: 
 d should be smallest integer such that: 

 T[k+m-1] = p[m-1-d] 

 T[k+m-2] = p[m-2-d] 

 T[k+i] = p[i-d] 

 Reminder:  

 k = starting index in target string 

 m = length of pattern 

 i = index of mismatch in pattern string 

 Problem: statement is valid only for d<= i 

 Need to ensure that we don’t “fall off” the left edge of the 
pattern 



Boyer-Moore : another example 

            t[k]                                 t[k+5]                                 t[k+8] 

        c X Y Z   

 Y Z W X Y Z X Y Z 

p[0]       p[1]     p[2]      p[3]     p[4]     p[5]      p[6]      p[7]    p[8] 

 Y  Y Y N 

If c == W, then d should be 3 

If c == R, then d should be 7 



Bad Character Rule 
Suppose that P1 is aligned to Ts now, and we perform a pair-wise 

comparing between text T and pattern P from right to left.  Assume that 

the first mismatch occurs when comparing Ts+j-1 with Pj . 

Since Ts+j-1  ≠Pj , we move the pattern P to the right such that the largest 

position c in the left of Pj is equal to Ts+j-1. We can shift the pattern at 

least (j-c) positions right. 

P x y t 

T x t 

P x y t 

s 

j m 1 c 

j m 1 

Shift 

s +j -1 



Rule 2-1: Character Matching Rule 

(A Special Version of Rule 2)  
 Bad character rule uses Rule 2-1 (Character Matching 

Rule). 

 For any character x in T, find the nearest x in P which 

is to the left of x in T.  

 
T

P

x

x



Implication of Rule 2-1 

 Case 1.  If there is a 

x in P to the left of T, 

move P so that the 

two x’s match. 

 

 

T

P

x

x



 Case 2: If no such a x exists in P, move P to 

the right of x 

 

x T 

P 



Ex:  Suppose that P1 is aligned to T6 now.  We compare pairwise between T and P from 

right to left.  Since T16,17 = P11,12 = “CA” and T15 =“G” ≠P10 = “T”.  Therefore, we 

find the rightmost position c=7 in the left of P10 in P  such that Pc is equal to “G”  and 

we can move the window at least (10-7=3) positions. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

T A A A A A A T C A C A T T A G C A A A A 

P A T C A C A G T A T C A 
1 2 3 4 5 6 7 8 9 10 11 12 

s=6 

P A T C A C A G T A T C A 
1 2 3 4 5 6 7 8 9 10 11 12 

m=12 j=10 c 

mismatch 

direction of the scan 



Good Suffix Rule 1 
 If a mismatch occurs in Ts+j-1, we match Ts+j-1 with Pj’-m+j , where j’ 

(m-j+1≦  j’ < m) is the largest position such that   

  (1) Pj+1,m is a suffix of P1,j’  

  (2) Pj’-(m-j) ≠Pj.  

 We can move the window at least (m-j’) position(s). 

P z t y t 

T x t 

P z t y t 

s 

Shift 

s+j-1 

j j’ m 1 j’-m+j 

j j’ m 1 j’-m+j 

z≠y 



Rule 2:  The Substring Matching Rule  

 For any substring u 

in T, find a nearest u 

in P which is to the 

left of it.  If such a u 

in P exists, move P;  

 

 

T

T

P

u

u

P

u

u

35 



Ex:  Suppose that P1 is aligned to T6 now.  We compare pair-wise between P and T 

from right to left.  Since T16,17 = “CA” = P11,12 and T15 =“A” ≠P10 = “T”.  We find 

the substring “CA” in the left of P10 in P such that “CA” is the suffix of P1,6  and 

the left character to this substring “CA” in P is not equal to P10 = “T”.  Therefore, 

we can move the window at least m-j’ (12-6=6) positions right. 

P A T C A C A T C A T C A 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

T A A A A A A G C C T A G C A A C A A A A 

P A T C A C A T C A T C A 

1 2 3 4 5 6 7 8 9 10 11 12 

j=10 

s=6 

j’=6 

s+j-1 

Shift 

m=12 

mismatch 

A≠T 



Good Suffix Rule 2 

 If a mismatch occurs in Ts+j-1, we match Ts+m-j’ with P1, 

where j’ (1≦ j’ ≦ m-j) is the largest position such that  

  P1,j’  is a suffix of  Pj+1,m.  

T x t 

P t’ y t 

s 

j’ j m 1 

Shift 

s+j-1 s+m-j’ 

j’ j m 1 
P.S. : t’ is suffix of substring t. 

P t’ y t 

t’ 

t’ 

Good Suffix Rule 2 is used only when Good Suffix Rule 1 can not be used. 

That is, t does not appear in P(1, j).  Thus, t is unique in P. 



Rule 3-1:  Unique Substring Rule  

 The substring u appears in P exactly once. 

 If the substring u matches with Ti,j , no matter whether a mismatch 
occurs in some position of P or not, we can slide the window by l.   

    

   

 T: 

 

   P:   

 

 

 
      

The string s is the longest prefix of P which equals to a suffix of u. 

s 

s s 

s u 

i j 

l 

u 

u 



Rule 1:  The Suffix to Prefix Rule  

 For a window to have any chance to match 

a pattern, in some way, there must be a 

suffix of the window which is equal to a 

prefix of the pattern. 

 

 T 

P 



Rule 1:  The Suffix to Prefix Rule  

 Note that the above rule also uses Rule 1. 

 It should also be noted that the unique substring is the shorter and 

the more right-sided the better. 

 A short u guarantees a short (or even empty) s which is desirable.  

u 

s s 

s u 

i j 

l 

u 



 Ex: Suppose that P1 is aligned to T6 now.  We compare pair-wise between P 
and T from right to left. Since T12 ≠ P7 and there is no substring P8,12 in left of 
P8 to exactly match T13,17.  We find a longest suffix “AATC” of substring 
T13,17, the longest suffix is also prefix of P.  We shift the window such that the 
last character of prefix substring to match the last character of the suffix 
substring.  Therefore, we can shift at least 12-4=8 positions. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

T A A A A A A T C A C A T T A A T C A A A 

P A A T C A T C T A A T C 
1 2 3 4 5 6 7 8 9 10 11 12 

j=7 

s=6 

j’=4 

P A A T C A T C T A A T C 
1 2 3 4 5 6 7 8 9 10 11 12 

m=12 

Shift 

mismatch 

j=7 j’=4 

m=12 



 Let B(a) be the rightmost position of a in P.  The 

function will be used for applying bad character rule. 

 

 

 

 We can move our pattern right at least j-B(Ts+j-1) 

position by above B function. 

 

 

 

Σ A C G T 

B 12 11 0 10 

j 1 2 3 4 5 6 7 8 9 10 11 12 

P A T C A C A T C A T C A 

j 1 2 3 4 5 6 7 8 9 10 11 12 

P A T C A C A T C A T C A 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

T A G C T A G C C T G C A C G T A C A 

Move at least  

10-B(G) = 10 positions 
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Let Gs(j) be the largest number of shifts by 

good suffix rule when a mismatch occurs for 

comparing Pj with some character in T. 



44 

• gs1(j) be the largest k such that Pj+1,m is a suffix of P1,k and 

Pk-m+j ≠ Pj, where m-j+1 ≦k<m ; 0 if there is no such k. 

   (gs1 is for Good Suffix Rule 1) 

• gs2(j) be the largest k such that P1,k is a suffix of Pj+1,m, 

where 1≦k ≦m-j; 0 if there is no such k. 

   (gs2 is for Good Suffix Rule 2.) 

• Gs(j) = m – max{gs1, gs2}, if j = m ,Gs(j)=1. 

j 1 2 3 4 5 6 7 8 9 10 11 12 

P A T C A C A T C A T C A 

gs1 0 0 0 0 0 0 9 0 0 6 1 0 

gs2 4 4 4 4 4 4 4 4 1 1 1 0 

Gs 8 8 8 8 8 8 3 8 11 6 11 1 

gs1(7)=9 

∵ P8,12 is a suffix of 

P1,9    and  P4 ≠ P7 

gs2(7)=4 

∵P1,4 is a suffix of P8,12 



Time Complexity 

 The preprocessing phase in O(m+Σ) 

complexity  

 If you are searching for ALL matches, worst 

case: 

 O(mn) when P is in T 

 T=AAAAAAAAAAA;  P=AAAA 

 O(m+n) when P is not in T 
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