
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

More on the Motif Problem

 Exhaustive Search and Median String are
both exact algorithms

 They always find the optimal solution, though
they may be too slow to perform practical
tasks

 Many algorithms sacrifice optimal solution for
speed

Some Motif Finding Programs

 CONSENSUS

 Hertz, Stromo (1989)

 GibbsDNA

 Lawrence et al (1993)

 MEME

Bailey, Elkan (1995)

 RandomProjections

Buhler, Tompa (2002)

 MULTIPROFILER

Keich, Pevzner (2002)

 MITRA

 Eskin, Pevzner (2002)

 Pattern Branching

 Price, Pevzner (2003)

CONSENSUS: Greedy Motif Search

 Find two closest l-mers in sequences 1 and 2 and forms

 2 x l alignment matrix with Score(s,2,DNA)

 At each of the following t-2 iterations CONSENSUS finds a “best”
l-mer in sequence i from the perspective of the already
constructed (i-1) x l alignment matrix for the first (i-1) sequences

 In other words, it finds an l-mer in sequence i maximizing

 Score(s,i,DNA)

 under the assumption that the first (i-1) l-mers have been already
chosen

 CONSENSUS sacrifices optimal solution for speed: in fact the
bulk of the time is actually spent locating the first 2 l-mers

EXACT STRING MATCHING

Eileen Kraemer

The problem of String Matching

Given a string ‘t’, the problem of string

matching deals with finding whether a pattern

‘p’ occurs in ‘t’ and if ‘p’ does occur then

returning position in ‘t’ where ‘p’ occurs.

Brute force (O(mn))

n <- |t|

m <- |p|

i <= 1

while i < n

 if p == t[i, i+m-1]

 return i;

 else

 i = i + 1;

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

p[0] p[1] p[2] p[3]

 Y Y Y N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 Y Y Y Y

Straightforward string searching

 Worst case:
 Pattern string always matches completely except for last

character

 Example: search for XXXXXXY in target string of
XXXXXXXXXXXXXXXXXXXX

 Outer loop executed once for every character in target
string

 Inner loop executed once for every character in pattern

 O(mn), where m = |p| and n = |t|

 Okay if patterns are short, but better algorithms
exist

Knuth-Morris-Pratt

 O(m+n)

 Key idea:

 if pattern fails to match, slide pattern to right by

as many boxes as possible without permitting a

match to go unnoticed

The KMP Algorithm - Motivation

 Knuth-Morris-Pratt’s algorithm

compares the pattern to the

text in left-to-right, but shifts

the pattern more intelligently

than the brute-force algorithm.

 When a mismatch occurs,

what is the most we can shift

the pattern so as to avoid

redundant comparisons?

 Answer: the largest prefix of

P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to

repeat these

comparisons

Resume

comparing

here

KMP Failure Function

 Knuth-Morris-Pratt’s

algorithm preprocesses the

pattern to find matches of

prefixes of the pattern with

the pattern itself

 The failure function F(j) is

defined as the size of the

largest prefix of P[0..j] that is

also a suffix of P[1..j]

 Knuth-Morris-Pratt’s

algorithm modifies the brute-

force algorithm so that if a

mismatch occurs at P[j] T[i]

we set j F(j 1)

j 0 1 2 3 4

P[j] a b a a b a

F(j) 0 0 1 1 2

x

j

. . a b a a b

a b a a b a

F(j 1)

a b a a b a

The KMP Algorithm

 The failure function can be

represented by an array and

can be computed in O(m) time

 At each iteration of the while-

loop, either

 i increases by one, or

 the shift amount i j increases

by at least one (observe that

F(j 1) < j)

 Hence, there are no more

than 2n iterations of the while-

loop

 Thus, KMP’s algorithm runs in

optimal time O(m n)

Algorithm KMPMatch(T, P)

 F failureFunction(P)
 i 0
 j 0
 while i n

 if T[i] P[j]
 if j m 1
 return i j { match }
 else
 i i 1
 j j 1
 else
 if j 0
 j F[j 1]
 else
 i i 1
return 1 { no match }

Computing the Failure Function

 The failure function can be

represented by an array and

can be computed in O(m) time

 The construction is similar to

the KMP algorithm itself

 At each iteration of the while-

loop, either

 i increases by one, or

 the shift amount i j increases

by at least one (observe that

F(j 1) < j)

 Hence, there are no more

than 2m iterations of the while-

loop

Algorithm failureFunction(P)

 F[0] 0
 i 1
 j 0
 while i m

 if P[i] P[j]
 {we have matched j + 1 chars}
 F[i] j + 1
 i i 1
 j j 1
 else if j 0 then
 {use failure function to shift P}
 j F[j 1]
 else
 F[i] 0 { no match }
 i i 1

Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4

P[j] a b a c a b

F(j) 0 0 1 0 1

The Boyer-Moore Algorithm

 Similar to KMP in that:

 Pattern compared against target

 On mismatch, move as far to right as possible

 Different from KMP in that:

 Compare the patterns from right to left instead of
left to right

 Does that make a difference?

 Yes – much faster on long targets; many
characters in target string are never examined at
all

Boyer-Moore example

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

p[0] p[1] p[2] p[3]

 N

There is no E in the pattern : thus the pattern can’t match if any characters

lie under t[3]. So, move four boxes to the right.

Boyer-Moore example

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

p[0] p[1] p[2] p[3]

 N

Again, no match. But there is a B in the pattern. So move two boxes to

the right.

Boyer-Moore example

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

p[0] p[1] p[2] p[3]

 Y Y Y Y

Boyer-Moore : another example

 t[k] t[k+1] … t[k+i] t[k+m-1]

 … c E … R G

 L E … S D E … R G

p[0] p[1] … p[i-1] p[i] p[i+1] … p[m-1]

 Y Y Y Y N

Problem: determine d, the number of boxes that the pattern can be

moved to the right.

d should be smallest integer such that t[k+m-1]= p[m-1-d], t[k+m-2] =

p[m-2-d], … t[k+i] = p[i-d]

The Boyer-Moore Algorithm

 We said:
 d should be smallest integer such that:

 T[k+m-1] = p[m-1-d]

 T[k+m-2] = p[m-2-d]

 T[k+i] = p[i-d]

 Reminder:

 k = starting index in target string

 m = length of pattern

 i = index of mismatch in pattern string

 Problem: statement is valid only for d<= i

 Need to ensure that we don’t “fall off” the left edge of the
pattern

Boyer-Moore : another example

 t[k] t[k+5] t[k+8]

 c X Y Z

 Y Z W X Y Z X Y Z

p[0] p[1] p[2] p[3] p[4] p[5] p[6] p[7] p[8]

 Y Y Y N

If c == W, then d should be 3

If c == R, then d should be 7

Bad Character Rule
Suppose that P1 is aligned to Ts now, and we perform a pair-wise

comparing between text T and pattern P from right to left. Assume that

the first mismatch occurs when comparing Ts+j-1 with Pj .

Since Ts+j-1 ≠Pj , we move the pattern P to the right such that the largest

position c in the left of Pj is equal to Ts+j-1. We can shift the pattern at

least (j-c) positions right.

P x y t

T x t

P x y t

s

j m 1 c

j m 1

Shift

s +j -1

Rule 2-1: Character Matching Rule

(A Special Version of Rule 2)
 Bad character rule uses Rule 2-1 (Character Matching

Rule).

 For any character x in T, find the nearest x in P which

is to the left of x in T.

T

P

x

x

Implication of Rule 2-1

 Case 1. If there is a

x in P to the left of T,

move P so that the

two x’s match.

T

P

x

x

 Case 2: If no such a x exists in P, move P to

the right of x

x T

P

Ex: Suppose that P1 is aligned to T6 now. We compare pairwise between T and P from

right to left. Since T16,17 = P11,12 = “CA” and T15 =“G” ≠P10 = “T”. Therefore, we

find the rightmost position c=7 in the left of P10 in P such that Pc is equal to “G” and

we can move the window at least (10-7=3) positions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A T C A C A T T A G C A A A A

P A T C A C A G T A T C A
1 2 3 4 5 6 7 8 9 10 11 12

s=6

P A T C A C A G T A T C A
1 2 3 4 5 6 7 8 9 10 11 12

m=12 j=10 c

mismatch

direction of the scan

Good Suffix Rule 1
 If a mismatch occurs in Ts+j-1, we match Ts+j-1 with Pj’-m+j , where j’

(m-j+1≦ j’ < m) is the largest position such that

 (1) Pj+1,m is a suffix of P1,j’

 (2) Pj’-(m-j) ≠Pj.

 We can move the window at least (m-j’) position(s).

P z t y t

T x t

P z t y t

s

Shift

s+j-1

j j’ m 1 j’-m+j

j j’ m 1 j’-m+j

z≠y

Rule 2: The Substring Matching Rule

 For any substring u

in T, find a nearest u

in P which is to the

left of it. If such a u

in P exists, move P;

T

T

P

u

u

P

u

u

35

Ex: Suppose that P1 is aligned to T6 now. We compare pair-wise between P and T

from right to left. Since T16,17 = “CA” = P11,12 and T15 =“A” ≠P10 = “T”. We find

the substring “CA” in the left of P10 in P such that “CA” is the suffix of P1,6 and

the left character to this substring “CA” in P is not equal to P10 = “T”. Therefore,

we can move the window at least m-j’ (12-6=6) positions right.

P A T C A C A T C A T C A

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A G C C T A G C A A C A A A A

P A T C A C A T C A T C A

1 2 3 4 5 6 7 8 9 10 11 12

j=10

s=6

j’=6

s+j-1

Shift

m=12

mismatch

A≠T

Good Suffix Rule 2

 If a mismatch occurs in Ts+j-1, we match Ts+m-j’ with P1,

where j’ (1≦ j’ ≦ m-j) is the largest position such that

 P1,j’ is a suffix of Pj+1,m.

T x t

P t’ y t

s

j’ j m 1

Shift

s+j-1 s+m-j’

j’ j m 1
P.S. : t’ is suffix of substring t.

P t’ y t

t’

t’

Good Suffix Rule 2 is used only when Good Suffix Rule 1 can not be used.

That is, t does not appear in P(1, j). Thus, t is unique in P.

Rule 3-1: Unique Substring Rule

 The substring u appears in P exactly once.

 If the substring u matches with Ti,j , no matter whether a mismatch
occurs in some position of P or not, we can slide the window by l.

 T:

 P:

The string s is the longest prefix of P which equals to a suffix of u.

s

s s

s u

i j

l

u

u

Rule 1: The Suffix to Prefix Rule

 For a window to have any chance to match

a pattern, in some way, there must be a

suffix of the window which is equal to a

prefix of the pattern.

 T

P

Rule 1: The Suffix to Prefix Rule

 Note that the above rule also uses Rule 1.

 It should also be noted that the unique substring is the shorter and

the more right-sided the better.

 A short u guarantees a short (or even empty) s which is desirable.

u

s s

s u

i j

l

u

 Ex: Suppose that P1 is aligned to T6 now. We compare pair-wise between P
and T from right to left. Since T12 ≠ P7 and there is no substring P8,12 in left of
P8 to exactly match T13,17. We find a longest suffix “AATC” of substring
T13,17, the longest suffix is also prefix of P. We shift the window such that the
last character of prefix substring to match the last character of the suffix
substring. Therefore, we can shift at least 12-4=8 positions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A T C A C A T T A A T C A A A

P A A T C A T C T A A T C
1 2 3 4 5 6 7 8 9 10 11 12

j=7

s=6

j’=4

P A A T C A T C T A A T C
1 2 3 4 5 6 7 8 9 10 11 12

m=12

Shift

mismatch

j=7 j’=4

m=12

 Let B(a) be the rightmost position of a in P. The

function will be used for applying bad character rule.

 We can move our pattern right at least j-B(Ts+j-1)

position by above B function.

Σ A C G T

B 12 11 0 10

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T A G C T A G C C T G C A C G T A C A

Move at least

10-B(G) = 10 positions

43

Let Gs(j) be the largest number of shifts by

good suffix rule when a mismatch occurs for

comparing Pj with some character in T.

44

• gs1(j) be the largest k such that Pj+1,m is a suffix of P1,k and

Pk-m+j ≠ Pj, where m-j+1 ≦k<m ; 0 if there is no such k.

 (gs1 is for Good Suffix Rule 1)

• gs2(j) be the largest k such that P1,k is a suffix of Pj+1,m,

where 1≦k ≦m-j; 0 if there is no such k.

 (gs2 is for Good Suffix Rule 2.)

• Gs(j) = m – max{gs1, gs2}, if j = m ,Gs(j)=1.

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

gs1 0 0 0 0 0 0 9 0 0 6 1 0

gs2 4 4 4 4 4 4 4 4 1 1 1 0

Gs 8 8 8 8 8 8 3 8 11 6 11 1

gs1(7)=9

∵ P8,12 is a suffix of

P1,9 and P4 ≠ P7

gs2(7)=4

∵P1,4 is a suffix of P8,12

Time Complexity

 The preprocessing phase in O(m+Σ)

complexity

 If you are searching for ALL matches, worst

case:

 O(mn) when P is in T

 T=AAAAAAAAAAA; P=AAAA

 O(m+n) when P is not in T

45

