CS481: Bioinformatics
Algorithms

Can Alkan
EA509
calkan@cs.bilkent.edu.tr

http://Iwww.cs.bilkent.edu.tr/~calkan/teaching/cs481/

EXACT STRING MATCHING

Fingerprint idea

Assume:

o We can compute a fingerprint f(P) of P in O(m)
time.

o Iff(P) #f(T[s .. stm-1]), then P = T[s .. s+m-1]
o We can compare fingerprints in O(1)

o We can compute f' = f(T[s+1.. s+m)]) from f(T]s ..
s+m-1]), in O(1)

NN

AALG;, lecture 3, © Simonas

W

Saltenis, 2004

Algorithm with Fingerprints

Let the alphabet X ={0,1,2,3,4,5,6,7,8,9}
Let fingerprint to be just a decimal number, i.e.,
f("1045") = 1103 + 0102 + 4101 + 5 = 1045

Fingerprint-Search (T, P)
01 fp <« compute £ (P) Ts]

new f
02 £ <« compute £(T[0..m-1]) lf A -
03 for s «< 0 ton - m do Z
04 if fp = £ return s N — JT
05 f « (£ - T[s]*10™1)*10 + T[s+m]
06 return -1 T[s+m]

Running time 20(m) + O(n-m) = O(n)

W

Saltenis, 2004

Using a Hash Function

Problem:
o we can not assume we can do arithmetics with m-digits-long
numbers in O(1) time
Solution: Use a hash function h = fmod g
o Forexample,ifq=7, h(“52")=52mod 7 = 3
o h(S1)=h(S2) = S1#S82
o Buth(S1) = h(S2) does not imply S1=S2
For example, if g =7, h("73") = 3, but “73” = “52”
Basic “mod q” arithmetics:
o (a+b)mod g=(amod g+ bmodqg) modq
o (a*b) mod g = (a mod g)*(b mod g) mod q

AALG;, lecture 3, © Simonas
Saltenis, 2004

Preprocessing and Stepping

Preprocessing:

o fp=P[m-1]+ 10*(P[m-2] + 10*(P[m-3]+ ... + 10*(P[1] +
10*P[0])...)) mod q

o In the same way compute ft from T[0..m-1]

o Example: P =92531", q=7,fp="?

Stepping:

o ft=(ft — T[s]*10™'mod q)*10 + T[s+m]) mod q

o 10™1Tmod g can be computed once in the preprocessing

o Example: Let T[...] = 5319”7, g = 7, what is the corresponding ft?

° new ft
l - A

~

7

- J
Y

AALG;, lecture 3, © Simonas f t
Saltenis, 2004 Ts+m]

Stepping

T =25319446766..., m =4, q=7/

T, = 2531
o ft= 2531 mod7 =4
T, ="5319"

a ft = ((ft — T[s]*(10™1 mod q))*10 + T[s+m]) mod q

a ft = ((ft — T[0]*(103 mod 7))*10 + T[0+4]) mod 7
=((4 - (21000 mod 7)) * 10 + T[4]) mod 7
= ((4-(2*6))*10+6) mod 7 = (-8*10+ 9) mod 7
=-71Tmod7 =6

20 5319 mod7 =6

Rabin-Karp Algorithm

Rabin-Karp-Search (T, P)

01l q <« a prime larger than m

02 ¢ « 10" mod g // run a loop multiplying by 10 mod g
03 fp < 0; ft <« O

04 for i « 0 to m-1 // preprocessing

05 fp < (10*fp + P[i]) mod g

06 ft « (10*ft + T[i]) mod g

07 for s «< 0 ton - m // matching

08 if fp = ft then // run a loop to compare strings
09 if P[0..m-1] = T[s..s+m-1] return s
10 ft « ((£ft - T[s]*c)*10 + T[s+m]) mod gq

11 return -1

AALG, lecture 3, © Simonas Saltenis,
2004

Analysis

If g is a prime, the hash function distributes m-digit

strings evenly among the g values

o Thus, only every gt value of shift s will result in matching
fingerprints (which will require comparing strings with O(m)
comparisons)

Expected running time (if g > m):

o Preprocessing: O(m)

o Outer loop: O(n-m)

o All inner loops:

o Total time: O(n-m)

Worst-case running time: O(nm)

AALG;, lecture 3, © Simonas
Saltenis, 2004

Rabin-Karp in Practice

If the alphabet has d characters, interpret
characters as radix-d digits (replace 10 with d in

the algorithm).
Choosing prime g > m can be done with

randomized algorithms in O(m), or g can be
fixed to be the largest prime so that 10*q fits in a

computer word.

AALG;, lecture 3, © Simonas
Saltenis, 2004

Searching 1n n comparisons

The goal: each character of the text is
compared only once!

Problem with the naive algorithm:

o Forgets what was learned from a partial match!

o Examples:

T = “Tweedledee and Tweedledum”
and P = “Tweedledum”

T = “pappappappar’ and P = “pappar”

AALG;, lecture 3, © Simonas

W

Saltenis, 2004

Finite automaton search
a

statea b ¢ P

010 0 a

111,20 b i-12 3456789 1
2300 a T[i]-- a b a b a b a ¢ a
3114 0 b state (i) 01 2 3 4 5 4 5 6 7
4 50 0 a

514 6 c

6|7/, 0 0 a Processing time takes ©(n).
71112 0 But have to first construct FA.

Main Issue: How to construct FA?

‘ Need some Notation ...

¢(w) = state FA ends up in after processing w.

Example: ¢(abab) = 4.

o(x) = max{k: P, suf x}. Called the suffix function.

Examples: Let P = ab.
o(e)=0
oc(ccaca) =1
c(ccab) =2

Note: If |P| = m, then o(x) = m indicates a match.
. ababbabbac...
States: 0 1.....m........ m..........

match match

FA Construction

Given: P[1..m] Let Q = states ={0, 1, ..., m}.

L]

initial final
Define transition function & as follows:

6(q, a) = o(P,a) for each g and a.

Example: P = ababaca
(5, b) = o(P;b)
= o(ababab)
=4

Intuition: Encountering a ‘b’ in state 5 means the current substring
doesn’t match. But, you know this substring ends with “abab” -- and
this is the longest suffix that matches the beginning of P. Thus, we
go to state 4 and continue processing “abab...” .

P=ababaca

m=7; Q={0,1,2,3,4,5,6,7)

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

P=ababaca

o(1, a) = o(P4a) = c(aa) = o(a) =1

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

P=ababaca

o(1, a) = o(P4a) = o(aa) = o(a) =1
6(1, ¢) =o(P,c) =c(ac) =0

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

P=ababaca

d(2, b) = o(P,b) = o(aba) = c(a) = 1
d(2, c) = o(P,c) =c(abc) =0

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

P=ababaca (fast forward & simplitied)

b,c a a
(0~ 0660000
b
Prefixes
a
ab
d(5, a) = o(Psa) = o(ababaa) = c(a) = 1 aba
d(5, b) = o(Psb) = o(ababab) = c(abab) = 4 abab
ababa
ababac

ababaca

P=ababaca (final, simplified)

T= abababacaba

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

T= abababacaba

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

T= abababacaba

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

T= abababacaba

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

T= abababacaba

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

T= abababacaba

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

T= abababacaba

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

T= abababacaba

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

T= abababacaba

Accept state, we are done

Prefixes

a

ab

aba
abab
ababa
ababac
ababaca

Analysts ot FA

Searching: O(n) = good
Preprocessing: O(m|X|) = bad
Memory: O(m|X|) = bad

COMBINATORIAL PATTERN
MATCHING

Genomic Repeats

Example of repeats:
o AT TA CTAGT
Motivation to find them:

o Genomic rearrangements are often
associated with repeats

o Trace evolutionary secrets

o Many tumors are characterized by an
explosion of repeats

Genomic Repeats

The problem is often more difficult:
o AT TACCGACCTAGTCT
Motivation to find them:

o Genomic rearrangements are often
associated with repeats

o Trace evolutionary secrets

o Many tumors are characterized by an
explosion of repeats

[mer Repeats

Long repeats are difficult to find
Short repeats are easy to find (e.g., hashing)

Simple approach to finding long repeats:

o Find exact repeats of short Fmers ([is usually
10 to 13)

0 Use Fmer repeats to potentially extend into
longer, maximal repeats

[Fmer Repeats (conrd)

There are typically many locations where an
Fmer Is repeated:

GCTTACAGATTCAGTCTTACAGATGGT

The 4-mer TTAC starts at locations 3 and 17

Extending Fmer Repeats

GCTTACAGATTCAGTCTTACAGATGGT

Extend these 4-mer matches:

GCTTACAGATTCAGTCITACAGATGGT

Maximal repeat: TTACAGAT

Maximal Repeats

To find maximal repeats in this way, we need
ALL start locations of all Fmers in the

genome

Hashing lets us find repeats quickly in this
manner

Hashing DNA sequences

o Each Fmer can be translated into a binary
string (A, T, C, G can be represented as
00, 01, 10, 11)

0 After assigning a unique integer per Fmer it
IS easy to get all start locations of each £
mer in a genome

Hashing: Maximal Repeats

To find repeats in a genome:

o For all Fmers in the genome, note the start
position and the sequence

o Generate a hash table index for each
unigue Fmer sequence

o In each index of the hash table, store all
genome start locations of the Fmer which

generated that index
o Extend Fmer repeats to maximal repeats

Hashing: Collisions

{-mer #1 10] 20 Lol 20 J400 1450
Dealing with -mer #2
collisions: -mer #3 B

3 003 J20031503 | 43

o “Chain’” all start
locations of Fmers

(linked list)

wis

150 15125

Chained Locations of {-mers

{-mer #n

Hashing: Summary

When finding genomic repeats from Fmers:

o Generate a hash table index for each Fmer
sequence

0 In each index, store all genome start
locations of the Fmer which generated that

iIndex
o Extend Fmer repeats to maximal repeats

Pattern Matching

What if, instead of finding repeats in a
genome, we want to find all sequences in a
database that contain a given pattern?

This leads us to a different problem, the
Pattern Matching Problem

Pattern Matching Problem

Goal: Find all occurrences of a pattern in a text

Input: Pattern p=p,...p,and text t=1t¢,...f

Output: All positions 1</<(m—-n+ 1) such that
the n-letter substring of t starting at /i matches p

Motivation: Searching database for a known
pattern

Exact Pattern Matching: A Brute-Force
Algorithm

PatternMatching(p,t)

7 m €< length of pattern p
2 n €< length of text t

s fori<cl1to(n-m+1)
4 ittt ;=P

5 output s/

Exact Pattern Matching: An Example

_ GCAT
= PatternMatching CGCATC
algorithm for: GCAT
CLCATC
o Pattern GCAT GCAT
CLCATC
o Text CGCATC CGCA'_II'_C

GCAT
CGCATC

Exact Pattern Matching: Running Time

PatternMatching runtime: O(nm)
2 KMP or BM: O(n+m)

Multiply by k if looking for k different patterns

Better so

o Can so

ution: suffix trees

ve problem in O(n) time

0 Conceptually related to keyword trees

Keyword Trees: Example

= Keyword tree:
o Apple

Also known as “trie”

Keyword Trees: Example (contd)

= Keyword tree:
o Apple
a2 Apropos

Keyword Trees: Example (contd)

= Keyword tree:
o Apple
a2 Apropos
o Banana

Keyword Trees: Example (contd)

= Keyword tree:
o Apple
a2 Apropos
o Banana
o Bandana

Keyword Trees: Example (contd)

= Keyword tree:
o Apple
a2 Apropos
o Banana
o Bandana
o Orange

Keyword Trees: Properties

o Stores a set of keywords
In a rooted labeled tree

o Each edge labeled with a
letter from an alphabet

o Any two edges coming
out of the same vertex
have distinct labels

o Every keyword stored 585 66 6
can be spelled on a path sl al fa
from root to some leaf Q O 0 O

Keyword Trees: Threading (conrd)

= Thread “appeal”
o appeal

Keyword Trees: Threading (conrd)

= Thread “appeal”
o appeal

Keyword Trees: Threading (conrd)

= Thread “appeal”
o appeal

Keyword Trees: Threading (conrd)

= Thread “appeal”
o appeal

Keyword Trees: Threading (conrd)

= Thread “apple”
0 apple

Keyword Trees: Threading (conrd)

= Thread “apple”
0 apple

Keyword Trees: Threading (conrd)

= Thread “apple”
0 apple

Keyword Trees: Threading (conrd)

= Thread “apple”
0 apple

Keyword Trees: Threading (conrd)

= Thread “apple”
o apple

Multiple Pattern Matching Problem

Goal: Given a set of patterns and a text, find all
occurrences of any of patterns in text

Input: k patterns p’,...,p%, and textt =¢,...t
1 m

Output: Positions 1 < i < m where substring of t
starting at matches p, for 1 <j< k

Motivation: Searching database for known multiple
patterns

Multiple Pattern Matching: Straightforward
Approach

Can solve as k “"Pattern Matching Problems”
0 Runtime:
O(kmn)
using the PatternMatching algorithm k times
o m - length of the text
0 n - average length of the pattern

Multiple Pattern Matching: Keyword Tree
Approach

Or, we could use keyword trees:

o Build keyword tree in O(N) time; N is total
length of all patterns

o With naive threading: O(N + nm)
o Aho-Corasick algorithm: O(N + m)

Keyword Trees: Threading

-~ R i
TO matCh patte rnS drive were proud to say that they were perfectly

. . normal thank you very much”
In a text using a
keyword tree:

o Build keyword UO -D Qg
tree of patterns S5 D55 0 O
0 “Thread” the 555D &
text throughthe 4 4 4 4
keyword tree e Ie
O

Keyword Trees: Threading (conrd)

“Com plete” When We normal thank vou very much”
reach a leaf in the

keyword tree

o 3o ed
o O 0O O @ O
g u f e ¥
YVhenIthre?dlng 1S O QO O @ O
complete,” we Ve O O O @
found a pattern in e ‘
O O
the text to

Problem: High memory requirement when N is large

Suffix Trees=Collapsed Keyword Trees

Similar to keyword trees,
except edges that form
paths are collapsed

o Built from text, not
patterns

o Each edge is labeled
with a substring of a
text 3

o All internal edges have ¢ O
at least two outgoing G
edges O

Q Leaves Iabeled by the ia) Kevwaord tee (b} Suffix tree
index of the pattern.

Suffix Tree of a Text

Suffix trees of a text is constructed for all its suffixes

ATCATG
TCATG Keyword Suffix
CATG | < Tree < Tree

ATG

TG

G

Suffix Tree of a Text

Suffix trees of a text is constructed for all its suffixes

ATCATG
TCATG
CATG | >
ATG
TG
G

Keyword Suffix
Tree | > Tree

How much time does it take?

‘ Suffix Tree of a Text

= Suffix trees of a text is constructed for all its suffixes

ATCATG
TCATG :
quadrati Keyword Suffix
Cﬁ_-ll_-g d Tree —— Tree
TG

Time is linear in the total size of all
suffixes, i.e., it is quadratic in the length of
the text

‘ Suttix tree (Example)

Let s=abab, a suffix tree of s is a
compressed trie of all suffixes of s=abab$

Trivial algorithm to build a Suffix tree

Put the largest suffix in

Put the suffix bab$ in

Put the suffix ab$ in

Put the suffix b$ in

Put the suffix $ in

We will also label each leaf with the starting point of the corres.
suffix.

Trivial algorithm: O(n2?) time

‘Suffix Trees: Advantages

= Suffix trees of a text is constructed for all its suffixes
= Suffix trees build faster than keyword trees

ATCATG
TCATG

quadrati KGYWOI’d
C"::::g d Tree

TGJ

G linear (Weiner suffix tree
algorithm)

Use of Suffix Trees

Suffix trees hold all suffixes of a text

ai.e., ATCGC: ATCGC, TCGC, CGC, GG, C
o Builds in O(m) time for text of length m

To find any pattern of length n in a text:

0 Build suffix tree for text

o Thread the pattern through the suffix tree

0 Can find pattern in text in O(n) time!

O(n + m) time for “Pattern Matching Problem”
o Build suffix tree and lookup pattern

Pattern Matching with Suffix Trees

SuffixTreePatternMatching(p,t)
Build suffix tree for text t
Thread pattern p through suffix tree
if threading is complete
output positions of all p-matching leaves in the tree
else
output “Pattern does not appear in text’

Sufttix Trees: Example

CATACATG

Figure 9.6 Threading the pattern ATG through the suffix tree for the text ATGCATA-
CATGG. The suffixes ATGCATACATGG and ATGG both match, as noted by the gray
vertices in the tree (the p-matching leaves). Each p-matching leat corresponds to a
position in the text where p occurs.

Generalized suffix tree

Given a set of strings S a generalized suffix
tree of S Is a compressed trie of all suffixes of
SeS

To make these suffixes prefix-free we add a
special char, say $, at the end of s

To associate each suffix with a unique string
iIn S add a different special char to each s

Generalized suffix tree (Example)

Let s,=abab and s,=aab here is a generalized suffix tree for

s,and s,
@ 4
$ # b (5) (4]
b$ b# O O *
ab$ ab# b qa 4 S (3)
bab b =~
ab$ aab# ~ Y (4)
abab$ al \g\# &
} b @
$/ (3)(2]
(1)

Matching a pattern against a database of strings

Longest common substring ot two strings

Every node with a leaf descendant

from string S, and a leaf () 4
descendant from string S, a/ 3
represents a maximal common (5
substring and vice versa. () O 3 #
b a 4
b)
Find such node with # S 4

largest “string depth”

Multiple Pattern Matching: Summary

Keyword and suffix trees are used to find
patterns in a text

Keyword trees:

o Build keyword tree of patterns, and thread text
through it

Suffix trees:

o Build suffix tree of text, and thread patterns
through it

