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EXACT STRING MATCHING 



Fingerprint idea 

 Assume: 

 We can compute a fingerprint f(P) of P in O(m) 

time. 

 If f(P)  f(T[s .. s+m–1]), then P  T[s .. s+m–1] 

 We can compare fingerprints in O(1) 

 We can compute f’ = f(T[s+1.. s+m]) from f(T[s .. 

s+m–1]), in O(1) 

f 

f’ 
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Algorithm with Fingerprints 

 Let the alphabet ={0,1,2,3,4,5,6,7,8,9} 

 Let fingerprint to be just a decimal number, i.e., 

f(“1045”) = 1*103 + 0*102 + 4*101 + 5 = 1045 

   
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Fingerprint-Search(T,P) 

01 fp  compute f(P) 

02 f  compute f(T[0..m–1])   

03 for s  0 to n – m do 

04    if fp = f return s 

05    f (f – T[s]*10m-1)*10 + T[s+m]  

06 return –1 

f 

new f 
T[s] 

T[s+m] 

 Running time 2O(m) + O(n–m) = O(n) 



Using a Hash Function 

 Problem:  

 we can not assume we can do arithmetics with m-digits-long 

numbers in O(1) time 

 Solution: Use a hash function h = f mod q  

 For example, if q = 7, h(“52”) = 52 mod 7 = 3 

 h(S1)  h(S2)   S1  S2  

 But h(S1) = h(S2) does not imply S1=S2 

 For example, if q = 7, h(“73”) = 3, but “73”  “52” 

 Basic “mod q” arithmetics: 

 (a+b) mod q = (a mod q + b mod q) mod q 

 (a*b) mod q = (a mod q)*(b mod q) mod q 

AALG, lecture 3, © Simonas 
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Preprocessing and Stepping 

 Preprocessing: 

 fp = P[m-1] + 10*(P[m-2] + 10*(P[m-3]+ … + 10*(P[1] + 

10*P[0])…)) mod q 

 In the same way compute ft from T[0..m-1] 

 Example: P = “2531”, q = 7, fp = ? 

 Stepping: 

 ft = (ft – T[s]*10m-1mod q)*10 + T[s+m]) mod q 

 10m-1 mod q  can be computed once in the preprocessing 

 Example: Let T[…] = “5319”, q = 7, what is the corresponding ft?  
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ft 

new ft 
T[s] 

T[s+m] 



Stepping 

 T = 25319446766…, m = 4, q=7 

 T0 = “2531” 
 ft =  2531 mod 7 = 4 

 T1 = “5319” 

 ft = ((ft – T[s]*(10m-1 mod q))*10 + T[s+m]) mod q 

 ft = ((ft – T[0]*(103 mod 7))*10 + T[0+4]) mod 7 

 = ((4 – (2*1000 mod 7)) * 10 + T[4]) mod 7 

 = ((4-(2*6))*10+6) mod 7 = (-8*10+ 9) mod 7 

 = -71 mod 7 = 6 

 5319 mod 7 = 6 



Rabin-Karp Algorithm 

AALG, lecture 3, © Simonas Šaltenis, 

2004 

Rabin-Karp-Search(T,P) 

01 q  a prime larger than m 

02 c  10m-1 mod q  // run a loop multiplying by 10 mod q        

03 fp  0; ft  0 

04 for i  0 to m-1  // preprocessing  

05    fp  (10*fp + P[i]) mod q 

06    ft  (10*ft + T[i]) mod q 

07 for s  0 to n – m  // matching 

08    if fp = ft then   // run a loop to compare strings  

09       if P[0..m-1] = T[s..s+m-1] return s   

10    ft ((ft – T[s]*c)*10 + T[s+m]) mod q  

11 return –1 



Analysis 

 If q is a prime, the hash function distributes m-digit 

strings evenly among the q values 

 Thus, only every qth value of shift s will result in matching 

fingerprints (which will require comparing strings with O(m) 

comparisons)  

 Expected running time (if q > m): 

 Preprocessing: O(m) 

 Outer loop: O(n-m) 

 All inner loops:   

 Total time: O(n-m) 

 Worst-case running time: O(nm)       
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Rabin-Karp in Practice 

 If the alphabet has d characters, interpret 

characters as radix-d digits (replace 10 with d in 

the algorithm). 

 Choosing prime q > m can be done with 

randomized algorithms in O(m), or q can be 

fixed to be the largest prime so that 10*q fits in a 

computer word. 
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Searching in n comparisons  

 The goal: each character of the text is 

compared only once! 

 Problem with the naïve algorithm: 

 Forgets what was learned from a partial match! 

 Examples: 

 T = “Tweedledee and Tweedledum”        

and P = “Tweedledum” 

 T = “pappappappar”  and P = “pappar” 

AALG, lecture 3, © Simonas 
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Finite automaton search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

a 

b 

b 

     a   b   c    P 

0   1   0   0    a 

1   1   2   0    b 

2   3   0   0    a 

3   1   4   0    b 

4   5   0   0    a 

5   1   4   6    c 

6   7   0   0    a 

7   1   2   0 

state 
input 

             i --  1 2 3 4 5 6 7 8 9 10 11 

        T[i] --  a b a b a b a c a   b   a 

state (i)  0  1 2 3 4 5 4 5 6 7   2   3 

Processing time takes (n). 

But have to first construct FA. 

Main Issue: How to construct FA? 



Need some Notation …  
(w) = state FA ends up in after processing w. 

 

Example: (abab) = 4. 
 

(x) = max{k: Pk suf x}.  Called the suffix function. 
 

Examples:  Let P = ab. 

( ) = 0 

(ccaca) = 1 

(ccab) = 2 
 

Note: If |P| = m, then (x) = m indicates a match. 

       T:     a  b  a  b  b  a  b  b  a  c  …  

States: 0  1…...m….….m………. 

 
match match 



FA Construction 

Given: P[1..m]   Let Q = states = {0, 1, …, m}. 

 

 

 

 

Define transition function  as follows: 
 

(q, a) = (Pqa) for each q and a. 

 

Example:  P = ababaca 

    (5, b) = (P5b)  

                             = (ababab) 

                             = 4  
 

Intuition: Encountering a ‘b’ in state 5 means the current substring 

doesn’t match.  But, you know this substring ends with “abab” -- and 

this is the longest suffix that matches the beginning of P.  Thus, we 

go to state 4 and continue processing “abab…” . 

initial final 



P=ababaca 

0 1 2 3 4 5 6 7 
a b a b a c a 

m=7;  Q={0,1,2,3,4,5,6,7) 
Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



P=ababaca 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 

(1, a) = (P1a) = (aa) = (a) = 1 

             

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



P=ababaca 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 

(1, a) = (P1a) = (aa) = (a) = 1 

(1, c) = (P1c) = (ac) = 0 

             

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 

c 



P=ababaca 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 

(2, b) = (P2b) = (aba) = (a) = 1 

(2, c) = (P2c) = (abc) = 0 

             

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 

c c 

b 



P=ababaca (fast forward & simplified) 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

(5, a) = (P5a) = (ababaa) = (a) = 1 

(5, b) = (P5b) = (ababab) = (abab) = 4 

 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



P=ababaca (final, simplified) 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

  

 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

 

 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Search 

0 1 2 3 4 5 6 7 
a b a b a c a 

a 
a 

a 

b 

b 

T= abababacaba 

 

Accept state, we are done 

Prefixes 

a 

ab 

aba 

abab 

ababa 

ababac 

ababaca 

b,c 



Analysis of FA 

 Searching: O(n)  good 

 Preprocessing: O(m| |)  bad 

 Memory: O(m| |)  bad 

 



COMBINATORIAL PATTERN 

MATCHING 



Genomic Repeats 

 Example of repeats: 

 ATGGTCTAGGTCCTAGTGGTC 

 Motivation to find them: 

 Genomic rearrangements are often 

associated with repeats 

 Trace evolutionary secrets 

 Many tumors are characterized by an 

explosion of repeats 



Genomic Repeats 

 The problem is often more difficult:  

 ATGGTCTAGGACCTAGTGTTC 

 Motivation to find them: 

 Genomic rearrangements are often 

associated with repeats 

 Trace evolutionary secrets 

 Many tumors are characterized by an 

explosion of repeats 



l-mer Repeats 

 Long repeats are difficult to find 

 Short repeats are easy to find (e.g., hashing) 

 

 Simple approach to finding long repeats: 
 

 Find exact repeats of short l-mers (l  is usually 
10 to 13)  
 

 Use l-mer repeats to potentially extend into 
longer, maximal repeats 

 



l-mer Repeats (cont’d) 

 There are typically many locations where an 
l-mer is repeated: 

 

GCTTACAGATTCAGTCTTACAGATGGT 

 

 The 4-mer TTAC starts at locations 3 and 17 



Extending l-mer Repeats 

GCTTACAGATTCAGTCTTACAGATGGT 

 

 Extend these 4-mer matches: 

 

GCTTACAGATTCAGTCTTACAGATGGT 

 

 Maximal repeat: TTACAGAT 



Maximal Repeats 

 To find maximal repeats in this way, we need 
ALL start locations of all l-mers in the 

genome 

 

 Hashing lets us find repeats quickly in this 

manner 

 



Hashing DNA sequences 

 

 Each l-mer can be translated into a binary 

string (A, T, C, G can be represented as 

00, 01, 10, 11) 

 After assigning a unique integer per l-mer it 

is easy to get all start locations of each l-

mer in a genome 



Hashing: Maximal Repeats 

 To find repeats in a genome: 

 For all l-mers in the genome, note the start 
position and the sequence 

 Generate a hash table index for each 
unique l-mer sequence 

 In each index of the hash table, store all 
genome start locations of the l-mer which 
generated that index 

 Extend l-mer repeats to maximal repeats 



Hashing: Collisions 

 

 Dealing with 

collisions: 

 “Chain” all start 
locations of l-mers 

(linked list) 



Hashing: Summary 

 When finding genomic repeats from l-mers: 

 Generate a hash table index for each l-mer 

sequence 

 In each index, store all genome start 
locations of the l-mer which generated that 

index 

 Extend l-mer repeats to maximal repeats 



Pattern Matching 

 What if, instead of finding repeats in a 

genome, we want to find all sequences in a 

database that contain a given pattern? 

 

 This leads us to a different problem, the 

Pattern Matching Problem 



Pattern Matching Problem 
 

 Goal: Find all occurrences of a pattern in a text 

 

 Input: Pattern p = p1…pn and text t = t1…tm 

 

 Output: All positions 1< i < (m – n + 1) such that 

the n-letter substring of t starting at i matches p 

 

 Motivation: Searching database for a known 

pattern 



Exact Pattern Matching: A Brute-Force 

Algorithm 

 
 

  PatternMatching(p,t) 

1 m  length of pattern p 

2 n  length of text t 

3 for i  1 to (n – m + 1) 

4    if ti…ti+m-1 = p 

5       output i 



Exact Pattern Matching: An Example 

 PatternMatching 

algorithm for: 

 

 Pattern GCAT 

 

 Text CGCATC 

GCAT 
CGCATC 

GCAT 
CGCATC 

CGCATC 
GCAT 

CGCATC 

CGCATC 
GCAT 

GCAT 



Exact Pattern Matching: Running Time  

 PatternMatching runtime: O(nm) 

 KMP or BM: O(n+m) 

 Multiply by k if looking for k different patterns 
 

 

 Better solution: suffix trees 
 

 Can solve problem in O(n) time 
 

 Conceptually related to keyword trees 



Keyword Trees: Example 

 Keyword tree: 

 Apple 

Also known as “trie” 



Keyword Trees: Example (cont’d) 

 Keyword tree: 

 Apple 

 Apropos 



Keyword Trees: Example (cont’d) 

 Keyword tree: 

 Apple 

 Apropos 

 Banana 



Keyword Trees: Example (cont’d) 

 Keyword tree: 

 Apple 

 Apropos 

 Banana 

 Bandana 



Keyword Trees: Example (cont’d) 

 Keyword tree: 

 Apple 

 Apropos 

 Banana 

 Bandana 

 Orange 

 



Keyword Trees: Properties 
 

 Stores a set of keywords 
in a rooted labeled tree 

 Each edge labeled with a 
letter from an alphabet 

 Any two edges coming 
out of the same vertex 
have distinct labels 

 Every keyword stored 
can be spelled on a path 
from root to some leaf 

 



Keyword Trees: Threading (cont’d) 

 Thread “appeal” 

 appeal 



Keyword Trees: Threading (cont’d) 

 Thread “appeal” 

 appeal 

 



Keyword Trees: Threading (cont’d) 

 Thread “appeal” 

 appeal 



Keyword Trees: Threading (cont’d) 

 Thread “appeal” 

 appeal 



Keyword Trees: Threading (cont’d) 

 Thread “apple” 

 apple 



Keyword Trees: Threading (cont’d) 

 Thread “apple” 

 apple 



Keyword Trees: Threading (cont’d) 

 Thread “apple” 

 apple 



Keyword Trees: Threading (cont’d) 

 Thread “apple” 

 apple 



Keyword Trees: Threading (cont’d) 

 Thread “apple” 

 apple 



Multiple Pattern Matching Problem 

 

 Goal: Given a set of patterns and a text, find all 

occurrences of any of patterns in text 

 

 Input: k patterns p1,…,pk, and text t = t1…tm 

 

 Output: Positions 1 < i < m where substring of t 

starting at i matches pj for 1 < j < k 

 

 Motivation: Searching database for known multiple 

patterns 



Multiple Pattern Matching: Straightforward 

Approach 

 Can solve as k “Pattern Matching Problems” 

 Runtime:  

                    O(kmn)  

   using the PatternMatching algorithm k times 

 m - length of the text 

 n  - average length of the pattern 

 

 

 



Multiple Pattern Matching: Keyword Tree 

Approach 

 Or, we could use keyword trees: 

 Build keyword tree in O(N) time; N is total 

length of all patterns 

 With naive threading: O(N + nm) 

 Aho-Corasick algorithm: O(N + m) 



Keyword Trees: Threading 

 To match patterns 

in a text using a 

keyword tree: 

 Build keyword 

tree of patterns 

 “Thread” the 

text through the 

keyword tree 



Keyword Trees: Threading (cont’d) 

 Threading is 

“complete” when we 

reach a leaf in the 

keyword tree 

 

 When threading is 

“complete,” we’ve 

found a pattern in 

the text 

Problem: High memory requirement when N is large 



Suffix Trees=Collapsed Keyword Trees 

 Similar to keyword trees, 
except edges that form 
paths are collapsed 

 Built from text, not 
patterns 

 Each edge is labeled 
with a substring of a 
text 

 All internal edges have 
at least two outgoing 
edges 

 Leaves labeled by the 
index of the pattern. 



Suffix Tree of a Text  

 Suffix trees of a text is constructed for all its suffixes  

 

 

  ATCATG 
    TCATG 
      CATG 
        ATG 
          TG 
        G 

Keyword 

   Tree 

Suffix 

 Tree 



Suffix Tree of a Text  

 Suffix trees of a text is constructed for all its suffixes  

 

 

  ATCATG 
    TCATG 
      CATG 
        ATG 
          TG 
        G 

Keyword 

   Tree 

Suffix 

 Tree 

How much time does it take? 



Suffix Tree of a Text  

 Suffix trees of a text is constructed for all its suffixes  

 

 

  ATCATG 
    TCATG 
      CATG 
        ATG 
          TG 
        G 

quadratic Keyword 

   Tree 

Suffix 

 Tree 

Time is linear in the total size of all 

suffixes, i.e., it is quadratic in the length of 

the text 



Suffix tree (Example)   

Let s=abab, a suffix tree of s is a 

compressed trie of all suffixes of s=abab$ 

{ 

   $ 

   b$ 

   ab$ 

   bab$ 

   abab$  

} 

a 
b 

a 
b 

$ 

a 
b 
$ 

b 

$ 

$ 

$ 



Trivial algorithm to build a Suffix tree     

Put the largest suffix in  

Put the suffix bab$ in  

a 
b 
a 
b 
$ 

a 
b 
a 
b 

$ 

a 
b 
$ 

b 



Put the suffix ab$ in  

a 
b 
a 
b 

$ 

a 
b 
$ 

b 

a 
b 

a 
b 

$ 

a 
b 
$ 

b 

$ 



Put the suffix b$ in  

a 
b 

a 
b 

$ 

a 
b 
$ 

b 

$ 

a 
b 

a 
b 

$ 

a 
b 
$ 

b 

$ 

$ 



Put the suffix $ in  

a 
b 

a 
b 

$ 

a 
b 

$ 

b 

$ 

$ 

a 
b 

a 
b 

$ 

a 
b 

$ 

b 

$ 

$ 

$ 



We will also label each leaf with the starting point of the corres. 

suffix.  

a 
b 

a 
b 

$ 

a 
b 

$ 

b 

$ 

$ 

$ 

1 
2 

a 
b 

a 
b 

$ 

a 
b 

$ 

b 

3 

$ 4 

$ 

5 

$ 

Trivial algorithm: O(n2) time 



Suffix Trees: Advantages 

 Suffix trees of a text is constructed for all its suffixes  

 Suffix trees build faster than keyword trees 

 

  ATCATG 
    TCATG 
      CATG 
        ATG 
          TG 
        G 

quadratic Keyword 

   Tree 

Suffix 

 Tree 

linear (Weiner suffix tree 

algorithm) 



Use of Suffix Trees 

 Suffix trees hold all suffixes of a text 

 i.e., ATCGC: ATCGC, TCGC, CGC, GC, C 

 Builds in O(m) time for text of length m 

 To find any pattern of length n in a text: 

 Build suffix tree for text 

 Thread the pattern through the suffix tree 

 Can find pattern in text in O(n) time! 

 O(n + m) time for “Pattern Matching Problem” 

 Build suffix tree and lookup pattern 



Pattern Matching with Suffix Trees 

SuffixTreePatternMatching(p,t) 

1 Build suffix tree for text t 

2 Thread pattern p through suffix tree 

3 if threading is complete 

4    output positions of all p-matching  leaves in the tree 

5 else 

6    output “Pattern does not appear in text” 



Suffix Trees: Example 



Generalized suffix tree   

Given a set of strings S a generalized suffix 

tree of S is a compressed trie of all suffixes of 

s  S 

To make these suffixes prefix-free we add a 

special char, say $, at the end of s 

To associate each suffix with a unique string 

in S add a different special char to each s 



Generalized suffix tree (Example)   

Let s1=abab and s2=aab here is a generalized suffix tree for 

s1 and s2  

{ 

   $           # 

   b$         b# 

   ab$       ab# 

   bab$     aab# 

   abab$   

} 

1 

2 

a 

b 

a 
b 

$ 

a 
b 
$ 

b 

3 

$ 

4 

$ 

5 

$ 

1 

b 
# 

a 

2 

# 

3 

# 

4 

# 

Matching a pattern against a database of strings 



Longest common substring of  two strings 

Every node with a leaf descendant 

from string s1 and a leaf 

descendant from string s2  
represents a maximal common 

substring and vice versa. 

1 

2 

a 

b 

a 
b 

$ 

a 
b 
$ 

b 

3 

$ 

4 

$ 

5 

$ 

1 

b 
# 

a 

2 

# 

3 

# 

4 

# 

Find such node with 

largest “string depth” 



Multiple Pattern Matching: Summary 

 Keyword and suffix trees are used to find 

patterns in a text  

 Keyword trees: 

 Build keyword tree of patterns, and thread text 

through it 

 Suffix trees: 

 Build suffix tree of text, and thread patterns 

through it 


