
CS481: Bioinformatics

Algorithms

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

EXACT STRING MATCHING

Fingerprint idea

 Assume:

 We can compute a fingerprint f(P) of P in O(m)

time.

 If f(P) f(T[s .. s+m–1]), then P T[s .. s+m–1]

 We can compare fingerprints in O(1)

 We can compute f’ = f(T[s+1.. s+m]) from f(T[s ..

s+m–1]), in O(1)

f

f’

AALG, lecture 3, © Simonas

Šaltenis, 2004

Algorithm with Fingerprints

 Let the alphabet ={0,1,2,3,4,5,6,7,8,9}

 Let fingerprint to be just a decimal number, i.e.,

f(“1045”) = 1*103 + 0*102 + 4*101 + 5 = 1045



AALG, lecture 3, © Simonas

Šaltenis, 2004

Fingerprint-Search(T,P)

01 fp compute f(P)

02 f compute f(T[0..m–1])

03 for s 0 to n – m do

04 if fp = f return s

05 f (f – T[s]*10m-1)*10 + T[s+m]

06 return –1

f

new f
T[s]

T[s+m]

 Running time 2O(m) + O(n–m) = O(n)

Using a Hash Function

 Problem:

 we can not assume we can do arithmetics with m-digits-long

numbers in O(1) time

 Solution: Use a hash function h = f mod q

 For example, if q = 7, h(“52”) = 52 mod 7 = 3

 h(S1) h(S2) S1 S2

 But h(S1) = h(S2) does not imply S1=S2

 For example, if q = 7, h(“73”) = 3, but “73” “52”

 Basic “mod q” arithmetics:

 (a+b) mod q = (a mod q + b mod q) mod q

 (a*b) mod q = (a mod q)*(b mod q) mod q

AALG, lecture 3, © Simonas

Šaltenis, 2004

Preprocessing and Stepping

 Preprocessing:

 fp = P[m-1] + 10*(P[m-2] + 10*(P[m-3]+ … + 10*(P[1] +

10*P[0])…)) mod q

 In the same way compute ft from T[0..m-1]

 Example: P = “2531”, q = 7, fp = ?

 Stepping:

 ft = (ft – T[s]*10m-1mod q)*10 + T[s+m]) mod q

 10m-1 mod q can be computed once in the preprocessing

 Example: Let T[…] = “5319”, q = 7, what is the corresponding ft?

AALG, lecture 3, © Simonas

Šaltenis, 2004

ft

new ft
T[s]

T[s+m]

Stepping

 T = 25319446766…, m = 4, q=7

 T0 = “2531”
 ft = 2531 mod 7 = 4

 T1 = “5319”

 ft = ((ft – T[s]*(10m-1 mod q))*10 + T[s+m]) mod q

 ft = ((ft – T[0]*(103 mod 7))*10 + T[0+4]) mod 7

 = ((4 – (2*1000 mod 7)) * 10 + T[4]) mod 7

 = ((4-(2*6))*10+6) mod 7 = (-8*10+ 9) mod 7

 = -71 mod 7 = 6

 5319 mod 7 = 6

Rabin-Karp Algorithm

AALG, lecture 3, © Simonas Šaltenis,

2004

Rabin-Karp-Search(T,P)

01 q a prime larger than m

02 c 10m-1 mod q // run a loop multiplying by 10 mod q

03 fp 0; ft 0

04 for i 0 to m-1 // preprocessing

05 fp (10*fp + P[i]) mod q

06 ft (10*ft + T[i]) mod q

07 for s 0 to n – m // matching

08 if fp = ft then // run a loop to compare strings

09 if P[0..m-1] = T[s..s+m-1] return s

10 ft ((ft – T[s]*c)*10 + T[s+m]) mod q

11 return –1

Analysis

 If q is a prime, the hash function distributes m-digit

strings evenly among the q values

 Thus, only every qth value of shift s will result in matching

fingerprints (which will require comparing strings with O(m)

comparisons)

 Expected running time (if q > m):

 Preprocessing: O(m)

 Outer loop: O(n-m)

 All inner loops:

 Total time: O(n-m)

 Worst-case running time: O(nm)

AALG, lecture 3, © Simonas

Šaltenis, 2004

n m
m O n m

q

Rabin-Karp in Practice

 If the alphabet has d characters, interpret

characters as radix-d digits (replace 10 with d in

the algorithm).

 Choosing prime q > m can be done with

randomized algorithms in O(m), or q can be

fixed to be the largest prime so that 10*q fits in a

computer word.

AALG, lecture 3, © Simonas

Šaltenis, 2004

Searching in n comparisons

 The goal: each character of the text is

compared only once!

 Problem with the naïve algorithm:

 Forgets what was learned from a partial match!

 Examples:

 T = “Tweedledee and Tweedledum”

and P = “Tweedledum”

 T = “pappappappar” and P = “pappar”

AALG, lecture 3, © Simonas

Šaltenis, 2004

Finite automaton search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

a

b

b

 a b c P

0 1 0 0 a

1 1 2 0 b

2 3 0 0 a

3 1 4 0 b

4 5 0 0 a

5 1 4 6 c

6 7 0 0 a

7 1 2 0

state
input

 i -- 1 2 3 4 5 6 7 8 9 10 11

 T[i] -- a b a b a b a c a b a

state (i) 0 1 2 3 4 5 4 5 6 7 2 3

Processing time takes (n).

But have to first construct FA.

Main Issue: How to construct FA?

Need some Notation …
(w) = state FA ends up in after processing w.

Example: (abab) = 4.

(x) = max{k: Pk suf x}. Called the suffix function.

Examples: Let P = ab.

() = 0

(ccaca) = 1

(ccab) = 2

Note: If |P| = m, then (x) = m indicates a match.

 T: a b a b b a b b a c …

States: 0 1…...m….….m……….

match match

FA Construction

Given: P[1..m] Let Q = states = {0, 1, …, m}.

Define transition function as follows:

(q, a) = (Pqa) for each q and a.

Example: P = ababaca

 (5, b) = (P5b)

 = (ababab)

 = 4

Intuition: Encountering a ‘b’ in state 5 means the current substring

doesn’t match. But, you know this substring ends with “abab” -- and

this is the longest suffix that matches the beginning of P. Thus, we

go to state 4 and continue processing “abab…” .

initial final

P=ababaca

0 1 2 3 4 5 6 7
a b a b a c a

m=7; Q={0,1,2,3,4,5,6,7)
Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

P=ababaca

0 1 2 3 4 5 6 7
a b a b a c a

a

(1, a) = (P1a) = (aa) = (a) = 1

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

P=ababaca

0 1 2 3 4 5 6 7
a b a b a c a

a

(1, a) = (P1a) = (aa) = (a) = 1

(1, c) = (P1c) = (ac) = 0

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

c

P=ababaca

0 1 2 3 4 5 6 7
a b a b a c a

a

(2, b) = (P2b) = (aba) = (a) = 1

(2, c) = (P2c) = (abc) = 0

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

c c

b

P=ababaca (fast forward & simplified)

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

(5, a) = (P5a) = (ababaa) = (a) = 1

(5, b) = (P5b) = (ababab) = (abab) = 4

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

P=ababaca (final, simplified)

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Search

0 1 2 3 4 5 6 7
a b a b a c a

a
a

a

b

b

T= abababacaba

Accept state, we are done

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

b,c

Analysis of FA

 Searching: O(n)  good

 Preprocessing: O(m| |)  bad

 Memory: O(m| |)  bad

COMBINATORIAL PATTERN

MATCHING

Genomic Repeats

 Example of repeats:

 ATGGTCTAGGTCCTAGTGGTC

 Motivation to find them:

 Genomic rearrangements are often

associated with repeats

 Trace evolutionary secrets

 Many tumors are characterized by an

explosion of repeats

Genomic Repeats

 The problem is often more difficult:

 ATGGTCTAGGACCTAGTGTTC

 Motivation to find them:

 Genomic rearrangements are often

associated with repeats

 Trace evolutionary secrets

 Many tumors are characterized by an

explosion of repeats

l-mer Repeats

 Long repeats are difficult to find

 Short repeats are easy to find (e.g., hashing)

 Simple approach to finding long repeats:

 Find exact repeats of short l-mers (l is usually
10 to 13)

 Use l-mer repeats to potentially extend into
longer, maximal repeats

l-mer Repeats (cont’d)

 There are typically many locations where an
l-mer is repeated:

GCTTACAGATTCAGTCTTACAGATGGT

 The 4-mer TTAC starts at locations 3 and 17

Extending l-mer Repeats

GCTTACAGATTCAGTCTTACAGATGGT

 Extend these 4-mer matches:

GCTTACAGATTCAGTCTTACAGATGGT

 Maximal repeat: TTACAGAT

Maximal Repeats

 To find maximal repeats in this way, we need
ALL start locations of all l-mers in the

genome

 Hashing lets us find repeats quickly in this

manner

Hashing DNA sequences

 Each l-mer can be translated into a binary

string (A, T, C, G can be represented as

00, 01, 10, 11)

 After assigning a unique integer per l-mer it

is easy to get all start locations of each l-

mer in a genome

Hashing: Maximal Repeats

 To find repeats in a genome:

 For all l-mers in the genome, note the start
position and the sequence

 Generate a hash table index for each
unique l-mer sequence

 In each index of the hash table, store all
genome start locations of the l-mer which
generated that index

 Extend l-mer repeats to maximal repeats

Hashing: Collisions

 Dealing with

collisions:

 “Chain” all start
locations of l-mers

(linked list)

Hashing: Summary

 When finding genomic repeats from l-mers:

 Generate a hash table index for each l-mer

sequence

 In each index, store all genome start
locations of the l-mer which generated that

index

 Extend l-mer repeats to maximal repeats

Pattern Matching

 What if, instead of finding repeats in a

genome, we want to find all sequences in a

database that contain a given pattern?

 This leads us to a different problem, the

Pattern Matching Problem

Pattern Matching Problem

 Goal: Find all occurrences of a pattern in a text

 Input: Pattern p = p1…pn and text t = t1…tm

 Output: All positions 1< i < (m – n + 1) such that

the n-letter substring of t starting at i matches p

 Motivation: Searching database for a known

pattern

Exact Pattern Matching: A Brute-Force

Algorithm

 PatternMatching(p,t)

1 m  length of pattern p

2 n  length of text t

3 for i  1 to (n – m + 1)

4 if ti…ti+m-1 = p

5 output i

Exact Pattern Matching: An Example

 PatternMatching

algorithm for:

 Pattern GCAT

 Text CGCATC

GCAT
CGCATC

GCAT
CGCATC

CGCATC
GCAT

CGCATC

CGCATC
GCAT

GCAT

Exact Pattern Matching: Running Time

 PatternMatching runtime: O(nm)

 KMP or BM: O(n+m)

 Multiply by k if looking for k different patterns

 Better solution: suffix trees

 Can solve problem in O(n) time

 Conceptually related to keyword trees

Keyword Trees: Example

 Keyword tree:

 Apple

Also known as “trie”

Keyword Trees: Example (cont’d)

 Keyword tree:

 Apple

 Apropos

Keyword Trees: Example (cont’d)

 Keyword tree:

 Apple

 Apropos

 Banana

Keyword Trees: Example (cont’d)

 Keyword tree:

 Apple

 Apropos

 Banana

 Bandana

Keyword Trees: Example (cont’d)

 Keyword tree:

 Apple

 Apropos

 Banana

 Bandana

 Orange

Keyword Trees: Properties

 Stores a set of keywords
in a rooted labeled tree

 Each edge labeled with a
letter from an alphabet

 Any two edges coming
out of the same vertex
have distinct labels

 Every keyword stored
can be spelled on a path
from root to some leaf

Keyword Trees: Threading (cont’d)

 Thread “appeal”

 appeal

Keyword Trees: Threading (cont’d)

 Thread “appeal”

 appeal

Keyword Trees: Threading (cont’d)

 Thread “appeal”

 appeal

Keyword Trees: Threading (cont’d)

 Thread “appeal”

 appeal

Keyword Trees: Threading (cont’d)

 Thread “apple”

 apple

Keyword Trees: Threading (cont’d)

 Thread “apple”

 apple

Keyword Trees: Threading (cont’d)

 Thread “apple”

 apple

Keyword Trees: Threading (cont’d)

 Thread “apple”

 apple

Keyword Trees: Threading (cont’d)

 Thread “apple”

 apple

Multiple Pattern Matching Problem

 Goal: Given a set of patterns and a text, find all

occurrences of any of patterns in text

 Input: k patterns p1,…,pk, and text t = t1…tm

 Output: Positions 1 < i < m where substring of t

starting at i matches pj for 1 < j < k

 Motivation: Searching database for known multiple

patterns

Multiple Pattern Matching: Straightforward

Approach

 Can solve as k “Pattern Matching Problems”

 Runtime:

 O(kmn)

 using the PatternMatching algorithm k times

 m - length of the text

 n - average length of the pattern

Multiple Pattern Matching: Keyword Tree

Approach

 Or, we could use keyword trees:

 Build keyword tree in O(N) time; N is total

length of all patterns

 With naive threading: O(N + nm)

 Aho-Corasick algorithm: O(N + m)

Keyword Trees: Threading

 To match patterns

in a text using a

keyword tree:

 Build keyword

tree of patterns

 “Thread” the

text through the

keyword tree

Keyword Trees: Threading (cont’d)

 Threading is

“complete” when we

reach a leaf in the

keyword tree

 When threading is

“complete,” we’ve

found a pattern in

the text

Problem: High memory requirement when N is large

Suffix Trees=Collapsed Keyword Trees

 Similar to keyword trees,
except edges that form
paths are collapsed

 Built from text, not
patterns

 Each edge is labeled
with a substring of a
text

 All internal edges have
at least two outgoing
edges

 Leaves labeled by the
index of the pattern.

Suffix Tree of a Text

 Suffix trees of a text is constructed for all its suffixes

 ATCATG
 TCATG
 CATG
 ATG
 TG
 G

Keyword

 Tree

Suffix

 Tree

Suffix Tree of a Text

 Suffix trees of a text is constructed for all its suffixes

 ATCATG
 TCATG
 CATG
 ATG
 TG
 G

Keyword

 Tree

Suffix

 Tree

How much time does it take?

Suffix Tree of a Text

 Suffix trees of a text is constructed for all its suffixes

 ATCATG
 TCATG
 CATG
 ATG
 TG
 G

quadratic Keyword

 Tree

Suffix

 Tree

Time is linear in the total size of all

suffixes, i.e., it is quadratic in the length of

the text

Suffix tree (Example)

Let s=abab, a suffix tree of s is a

compressed trie of all suffixes of s=abab$

{

 $

 b$

 ab$

 bab$

 abab$

}

a
b

a
b

$

a
b
$

b

$

$

$

Trivial algorithm to build a Suffix tree

Put the largest suffix in

Put the suffix bab$ in

a
b
a
b
$

a
b
a
b

$

a
b
$

b

Put the suffix ab$ in

a
b
a
b

$

a
b
$

b

a
b

a
b

$

a
b
$

b

$

Put the suffix b$ in

a
b

a
b

$

a
b
$

b

$

a
b

a
b

$

a
b
$

b

$

$

Put the suffix $ in

a
b

a
b

$

a
b

$

b

$

$

a
b

a
b

$

a
b

$

b

$

$

$

We will also label each leaf with the starting point of the corres.

suffix.

a
b

a
b

$

a
b

$

b

$

$

$

1
2

a
b

a
b

$

a
b

$

b

3

$ 4

$

5

$

Trivial algorithm: O(n2) time

Suffix Trees: Advantages

 Suffix trees of a text is constructed for all its suffixes

 Suffix trees build faster than keyword trees

 ATCATG
 TCATG
 CATG
 ATG
 TG
 G

quadratic Keyword

 Tree

Suffix

 Tree

linear (Weiner suffix tree

algorithm)

Use of Suffix Trees

 Suffix trees hold all suffixes of a text

 i.e., ATCGC: ATCGC, TCGC, CGC, GC, C

 Builds in O(m) time for text of length m

 To find any pattern of length n in a text:

 Build suffix tree for text

 Thread the pattern through the suffix tree

 Can find pattern in text in O(n) time!

 O(n + m) time for “Pattern Matching Problem”

 Build suffix tree and lookup pattern

Pattern Matching with Suffix Trees

SuffixTreePatternMatching(p,t)

1 Build suffix tree for text t

2 Thread pattern p through suffix tree

3 if threading is complete

4 output positions of all p-matching leaves in the tree

5 else

6 output “Pattern does not appear in text”

Suffix Trees: Example

Generalized suffix tree

Given a set of strings S a generalized suffix

tree of S is a compressed trie of all suffixes of

s S

To make these suffixes prefix-free we add a

special char, say $, at the end of s

To associate each suffix with a unique string

in S add a different special char to each s

Generalized suffix tree (Example)

Let s1=abab and s2=aab here is a generalized suffix tree for

s1 and s2

{

 $ #

 b$ b#

 ab$ ab#

 bab$ aab#

 abab$

}

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5

$

1

b

a

2

3

4

Matching a pattern against a database of strings

Longest common substring of two strings

Every node with a leaf descendant

from string s1 and a leaf

descendant from string s2
represents a maximal common

substring and vice versa.

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5

$

1

b

a

2

3

4

Find such node with

largest “string depth”

Multiple Pattern Matching: Summary

 Keyword and suffix trees are used to find

patterns in a text

 Keyword trees:

 Build keyword tree of patterns, and thread text

through it

 Suffix trees:

 Build suffix tree of text, and thread patterns

through it

