
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

 Define M to be a binary n by m matrix such that:

M(i,j) = 1 iff the first i characters of P exactly match

the i characters of T ending at character j.

 M(i,j) = 1 iff P[1 .. i] ≡ T[j-i+1 .. j]

The Shift-And Method

 Let T = california

 Let P = for

M =

 M(i,j) = 1 iff the first i characters of P exactly

match the i characters of T ending at character j.

The Shift-And Method

1 2 3 4 5 6 7 8 9 m = 10

1 0 0 0 0 1 0 0 0 0 0

2 0 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0

How to construct M

 We will construct M column by column.

 Two definitions:

 Bit-Shift(j-1) is the vector derived by shifting the

vector for column j-1 down by one and setting the first

bit to 1.

 Example:

0

1

1

0

1

)

1

0

1

1

0

(BitShift

 We define the n-length binary vector U(x) for each

character x in the alphabet. U(x) is set to 1 for the

positions in P where character x appears.

 Example:

P = abaac

How to construct M

0

1

1

0

1

)(aU

0

0

0

1

0

)(bU

1

0

0

0

0

)(cU

 Initialize column 0 of M to all zeros

 For j > 1 column j is obtained by

How to construct M

))(()1()(jTUjBitShiftjM

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 1 2 3 4 5

P = a b a a c

An example j = 1

1 2 3 4 5 6 7 8 9 1

0

1 0

2 0

3 0

4 0

5 0

0

0

0

0

0

)(xU

0

0

0

0

0

0

0

0

0

0

&

0

0

0

0

1

))1((&)0(TUBitShift

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 1 2 3 4 5

P = a b a a c

An example j = 2

0

1

1

0

1

)(aU

1 2 3 4 5 6 7 8 9 1

0

1 0 1

2 0 0

3 0 0

4 0 0

5 0 0

0

0

0

0

1

0

1

1

0

1

&

0

0

0

0

1

))2((&)1(TUBitShift

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 1 2 3 4 5

P = a b a a c

An example j = 3

0

0

0

1

0

)(bU

1 2 3 4 5 6 7 8 9 1

0

1 0 1 0

2 0 0 1

3 0 0 0

4 0 0 0

5 0 0 0

0

0

0

1

0

0

0

0

1

0

&

0

0

0

1

1

))3((&)2(TUBitShift

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 1 2 3 4 5

P = a b a a c

An example j = 8

0

1

1

0

1

)(aU

1 2 3 4 5 6 7 8 9 1

0

1 0 1 0 0 1 0 1 1

2 0 0 1 0 0 1 0 0

3 0 0 0 0 0 0 1 0

4 0 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0 0

0

1

0

0

1

0

1

1

0

1

&

0

1

0

1

1

))8((&)7(TUBitShift

 For i > 1, Entry M(i,j) = 1 iff

1) The first i-1 characters of P match the i-1characters

of T ending at character j-1.

2) Character P(i) ≡ T(j).

 1) is true when M(i-1,j-1) = 1.

 2) is true when the i’th bit of U(T(j)) = 1.

 The algorithm computes the and of these two bits.

Correctness

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 a b a a c

Correctness

1 2 3 4 5 6 7 8 9 1

0

1 0 1 0 0 1 0 1 1 0 1

2 0 0 1 0 0 1 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0

4 0 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 0 1 0

 M(4,8) = 1, this is because a b a a is a prefix of P of length 4

that ends at position 8 in T.

 Condition 1) – We had a b a as a prefix of length 3 that ended

at position 7 in T ↔ M(3,7) = 1.

 Condition 2) – The fourth bit of P is the eighth bit of T ↔ The

fourth bit of U(T(8)) = 1.

 Formally the running time is Θ(mn).

 However, the method is very efficient if n is the size

of a single or a few computer words.

 Furthermore only two columns of M are needed at

any given time. Hence, the space used by the

algorithm is O(n).

How much did we pay?

AHO-CORASICK

Slides from Charles Yan

Search in keyword trees

 Naïve threading in keyword trees

do not remember the partial

matches

 P={apple, appropos}

 T=appappropos

 When threading

 app is a partial match

 But naïve threading will go back to the

root and re-thread app

 Define failure links

Failure Link

v: a node in keyword tree K

L(v): the label on v, that is, the concatenation of characters

on the path from the root to v.

lp(v): the length of the longest proper suffix of string L(v) that

is a prefix of some pattern in P. Let this substring be

Lemma. There is a unique node in the keyword tree that is labeled

by string Let this node be nv. Note that nv can be the root.

The ordered pair (v, nv) is called a failure link.

Failure Link

P={potato, tattoo, theater, other}

v

nv

Failure Link

Failure link computation is O(n)

Failure Link

x x p o t a t t o o x x

l=3 c=8

w

nw

Failure Link

x x p o t a t t o o x x

l=c-lp(w)=8-3=5 c=8

w

nw

Failure Link

How to construct failure links for a keyword tree in a linear time?

Let d be the distance of a node (v) from the root r.

 When d≤1, i.e., v is the root or v is one character away from r,

 then nv=r.

 Suppose nv has been computed for every node (v) with d ≤ k,

 we are going to compute nv for every node with d=k+1.

 v`: parent of v, then v` is k characters from r, that is d=k

 thus the failure link for v` has been computed. nv`

 x: the character on edge (v`, v)

Failure Link

v’

v

nv’

x

x

’

’

v’

v

nv’

x

x nv=w

(1) If there is an edge (nv`, w) out of nv` labeled with x, then

nv=w.

w

Failure Link

v’

v

nv’

nv

Failure Link

(2) If such an edge does not exist, examine nnv` to see if there

is an edge out of it labeled with x. Continue until the root.

v’

v

nv’

x

y

’

’

z

x w nnv’

v’

v

nv’

x

y

’

’

z

x w nnv’

’

’

’
’

’

’

Failure Link

(2) If such an edge does not exist, examine nnv` to see if there

is an edge out of it labeled with x. Continue until the root.

v’

v

nv’

x

y

’

’

z

x w nnv’

v’

v

nv’

x

y

’

’

z

x
nv=w

nnv’

’

’

’
’

’

’

Failure Link

v’

v

nnv’

nv’

nv

Failure Link

v’

v

nnv’

nv’

nv

Failure Link

Output: calculate nv for v

Algorithm nv

 v` is the parent of v in K

 x is the character on edge (v`, v)

 w=nv`

 while there is no edge out of w labeled with x and w≠r

 w=nw

 If there is an edge (w, w`) out of w labeled x then

 nv=w`

 else nv=r

Aho-Corasick Algorithm

Input: Pattern set P and text T

Output: all occurrences in T any pattern from P

Algorithm AC

l=1;

c=1;

w=root of K

Repeat

 while there is an edge (w, w’) labeled with T(c)

 if w` is numbered by pattern i then

 report that pi occurs in T starting at l;

 w=w’; c++;

 w=nw and l=c-lp(w);

Until c>m

SUFFIX ARRAYS

Slides from Tolga Can

Suffix arrays

 Suffix arrays were introduced by Manber and

Myers in 1993

 More space efficient than suffix trees

 A suffix array for a string x of length m is an

array of size m that specifies the lexicographic

ordering of the suffixes of x.

Suffix arrays

Example of a suffix array for acaaacatat$

3

4

1

5

7

9

2

6

8

10

11

Suffix array construction

 Naive in place construction

 Similar to insertion sort

 Insert all the suffixes into the array one by one

making sure that the new inserted suffix is in its

correct place

 Running time complexity:

 O(m2) where m is the length of the string

 Manber and Myers give a O(m log m)

construction.

Suffix arrays

 O(n) space where n is the size of the database

string

 Space efficient. However, there’s an increase in

query time

 Lookup query

 Based on binary search

 O(m log n) time; m is the size of the query

 Can reduce time to O(m + log n) using a more

efficient implementation

Searching for a pattern in Suffix Arrays

find(Pattern P in SuffixArray A):

 i = 0

 lo = 0, hi = length(A)

 for 0<=i<length(P):

 Binary search for x,y

 where P[i]=S[A[j]+i] for

lo<=x<=j<y<=hi

 lo = x, hi = y

 return {A[lo],A[lo+1],...,A[hi-1]}

Search example
 Search is in mississippi$

0 11 i$

1 8 ippi$

2 5 issippi$

3 2 ississippi$

4 1 mississippi$

5 10 pi$

6 9 ppi$

7 7 sippi$

8 4 sissippi$

9 6 ssippi$

10 3 ssissippi$

11 12 $

Examine the pattern letter

by letter, reducing the

range of occurrence each

time.

First letter i:

 occurs in indices from 0

to 3

So, pattern should be

between these indices.

Second letter s:

 occurs in indices from 2 to

3

Done.

Output: issippi$ and

ississippi$

Suffix Arrays

 It can be built very fast.

 It can answer queries very fast:

 How many times ATG appears?

 Disadvantages:

 Can’t do approximate matching

 Hard to insert new stuff (need to rebuild the array)

dynamically.

