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 Define M to be a binary n by m matrix such that: 

 

M(i,j) = 1 iff the first i characters of P exactly match 

the i characters of T ending at character j.  

 

 M(i,j) = 1 iff P[1 .. i] ≡ T[j-i+1 .. j] 

 

The Shift-And Method 



 Let T = california  

 Let P = for 

 

 

 

M =  

  

 

 

 M(i,j) = 1 iff the first i characters of P exactly 

match the i characters of T ending at character j. 

The Shift-And Method 

1 2 3 4 5 6 7 8 9 m = 10 

1 0 0 0 0 1 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 0 0 0 1 0 0 0 



How to construct M 

 We will construct M column by column. 

 Two definitions: 

 Bit-Shift(j-1) is the vector derived by shifting the 

vector for column j-1 down by one and setting the first 

bit to 1. 

 Example: 
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 We define the n-length binary vector U(x) for each 

character x in the alphabet. U(x) is set to 1 for the 

positions in P where character x appears. 

 Example:  

 

 

 

P = abaac 

   

How to construct M 
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 Initialize column 0 of M to all zeros 

 For j > 1 column j is obtained by 

 

 

   

How to construct M 
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      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

      1 2 3 4 5 

P = a b a a c 

An example j = 1 

1 2 3 4 5 6 7 8 9 1
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      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

      1 2 3 4 5 

P = a b a a c 

An example j = 2 
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      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

      1 2 3 4 5 

P = a b a a c 

An example j = 3 
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1 2 3 4 5 6 7 8 9 1

0 

1 0 1 0 

2 0 0 1 

3 0 0 0 

4 0 0 0 

5 0 0 0 
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      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

      1 2 3 4 5 

P = a b a a c 

An example j = 8 
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1 2 3 4 5 6 7 8 9 1

0 

1 0 1 0 0 1 0 1 1 

2 0 0 1 0 0 1 0 0 

3 0 0 0 0 0 0 1 0 

4 0 0 0 0 0 0 0 1 

5 0 0 0 0 0 0 0 0 
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 For i > 1, Entry M(i,j) = 1 iff 

1) The first i-1 characters of P match the i-1characters 

of T ending at character j-1. 

2) Character P(i) ≡ T(j). 

 

 1) is true when M(i-1,j-1) = 1. 

 2) is true when the i’th bit of U(T(j)) = 1. 

 

 The algorithm computes the and of these two bits. 

 

Correctness  



      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

          a b a a c 

Correctness 

1 2 3 4 5 6 7 8 9 1

0 

1 0 1 0 0 1 0 1 1 0 1 

2 0 0 1 0 0 1 0 0 0 0 

3 0 0 0 0 0 0 1 0 0 0 

4 0 0 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 0 0 0 1 0 

 M(4,8) = 1, this is because a b a a is a prefix of P of length 4 

that ends at position 8 in T. 

 Condition 1) – We had a b a as a prefix of length 3 that ended 

at position 7 in T ↔ M(3,7) = 1. 

 Condition 2) – The fourth bit of P is the eighth bit of T  ↔ The 

fourth bit of U(T(8)) = 1. 



 Formally the running time is Θ(mn). 

 However, the method is very efficient if n is the size 

of a single or a few computer words. 

 Furthermore only two columns of M are needed at 

any given time. Hence, the space used by the 

algorithm is O(n). 

 

 

 

 

 

 

How much did we pay? 
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Search in keyword trees 

 Naïve threading in keyword trees 

do not remember the partial 

matches 

 P={apple, appropos} 

 T=appappropos 

 When threading 

 app is a partial match 

 But naïve threading will go back to the 

root and re-thread app 

 Define failure links 



Failure Link 

v: a node in keyword tree K 

L(v): the label on v, that is, the concatenation of characters 

on the path from the root to v.  

lp(v): the length of the longest proper suffix of string L(v) that 

is a prefix of some pattern in P. Let this substring be 

Lemma. There is a unique node in the keyword tree that is labeled 

by string Let this node be nv. Note that nv can be the root. 

 

The ordered pair (v, nv) is called a failure link.  



Failure Link 

P={potato, tattoo, theater, other} 

v 

nv 



Failure Link 

Failure link computation is O(n) 



Failure Link 

x x p    o  t  a  t   t o o x x 

l=3 c=8 

w 

nw 



Failure Link 

x x p o   t   a    t      t   o     o   x x 

l=c-lp(w)=8-3=5 c=8 

w 

nw 



Failure Link 

How to construct failure links for a keyword tree in a linear time? 

 

Let d be the distance of a node (v) from the root r. 

 When d≤1, i.e., v is the root or v is one character away from r, 

 then nv=r. 

 Suppose nv has been computed for every node (v) with d ≤ k, 

 we are going to compute nv for every node with d=k+1.  

  v`:  parent of v, then v` is k characters from r, that is d=k 

   thus the failure link for v` has been computed. nv` 

  x: the character on edge (v`, v) 



Failure Link 
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(1) If there is an edge (nv`, w) out of nv` labeled with x, then 

nv=w. 

w 



Failure Link 
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Failure Link 

(2) If such an edge does not exist, examine nnv` to see if there 

is an edge out of it labeled with x. Continue until the root. 
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Failure Link 

(2) If such an edge does not exist, examine nnv` to see if there 

is an edge out of it labeled with x. Continue until the root. 

 

v’ 

v 

nv’ 

x 

y 

’

’ 

z 

x w nnv’ 

v’ 

v 

nv’ 

x 

y 

’

’ 

z 

x 
nv=w 

nnv’ 

’ 

’ 

’ 
’ 

’ 

’ 



Failure Link 
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Failure Link 
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Failure Link 

Output: calculate nv for v 

Algorithm nv 

 v` is the parent of v in K 

 x is the character on edge (v`, v) 

 w=nv`  

 while there is no edge out of w labeled with x and w≠r 

  w=nw 

 If there is an edge (w, w`) out of w labeled x then  

  nv=w` 

 else nv=r 

 



Aho-Corasick Algorithm 

Input: Pattern set P and text T 

Output: all occurrences in T any pattern from P 

Algorithm AC 

l=1; 

c=1; 

w=root of K 

Repeat 

 while there is an edge (w, w’) labeled with T(c) 

  if w` is numbered by pattern i then 

   report that pi occurs in T starting at l; 

  w=w’; c++; 

 w=nw and l=c-lp(w); 

Until c>m 



SUFFIX ARRAYS 
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Suffix arrays 

 Suffix arrays were introduced by Manber and 

Myers in 1993 

 More space efficient than suffix trees 

 A suffix array for a string x of length m is an 

array of size m that specifies the lexicographic 

ordering of the suffixes of x. 



Suffix arrays 

Example of a suffix array for acaaacatat$ 
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Suffix array construction 

 Naive in place construction 

 Similar to insertion sort 

 Insert all the suffixes into the array one by one 

making sure that the new inserted suffix is in its 

correct place 

 Running time complexity: 

 O(m2) where m is the length of the string 

 Manber and Myers give a O(m log m) 

construction. 



Suffix arrays 

 O(n) space where n is the size of the database 

string 

 Space efficient. However, there’s an increase in 

query time 

 Lookup query 

 Based on binary search 

 O(m log n) time; m is the size of the query 

 Can reduce time to O(m + log n) using a more 

efficient implementation 

 



Searching for a pattern in Suffix Arrays 

 

find(Pattern P in SuffixArray A): 

   i = 0 

   lo = 0, hi = length(A) 

    for 0<=i<length(P): 

       Binary search for x,y                        

       where P[i]=S[A[j]+i] for 

lo<=x<=j<y<=hi 

       lo = x, hi = y 

    return {A[lo],A[lo+1],...,A[hi-1]} 

 



Search example 
 Search is in mississippi$ 

0 11 i$ 

1 8 ippi$ 

2 5 issippi$ 

3 2 ississippi$ 

4 1 mississippi$ 

5 10 pi$ 

6 9 ppi$ 

7 7 sippi$ 

8 4 sissippi$ 

9 6 ssippi$ 

10 3 ssissippi$ 

11 12 $ 

Examine the pattern letter 

by letter, reducing the 

range of occurrence each 

time. 

First letter i: 

   occurs in indices from 0 

to 3 

 

So, pattern should be 

between these indices. 

Second letter s: 

   occurs in indices from 2 to 

3 

 

Done. 

Output: issippi$ and 

ississippi$ 



Suffix Arrays 

 It can be built very fast. 

 It can answer queries very fast:  

 How many times ATG appears? 

 Disadvantages:  

 Can’t do approximate matching 

 Hard to insert new stuff (need to rebuild the array) 

dynamically. 


