
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

 Define M to be a binary n by m matrix such that:

M(i,j) = 1 iff the first i characters of P exactly match

the i characters of T ending at character j.

 M(i,j) = 1 iff P[1 .. i] ≡ T[j-i+1 .. j]

The Shift-And Method

 Let T = california

 Let P = for

M =

 M(i,j) = 1 iff the first i characters of P exactly

match the i characters of T ending at character j.

The Shift-And Method

1 2 3 4 5 6 7 8 9 m = 10

1 0 0 0 0 1 0 0 0 0 0

2 0 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0

How to construct M

 We will construct M column by column.

 Two definitions:

 Bit-Shift(j-1) is the vector derived by shifting the

vector for column j-1 down by one and setting the first

bit to 1.

 Example:

0

1

1

0

1

)

1

0

1

1

0

(BitShift

 We define the n-length binary vector U(x) for each

character x in the alphabet. U(x) is set to 1 for the

positions in P where character x appears.

 Example:

P = abaac

How to construct M

0

1

1

0

1

)(aU

0

0

0

1

0

)(bU

1

0

0

0

0

)(cU

 Initialize column 0 of M to all zeros

 For j > 1 column j is obtained by

How to construct M

))(()1()(jTUjBitShiftjM

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 1 2 3 4 5

P = a b a a c

An example j = 1

1 2 3 4 5 6 7 8 9 1

0

1 0

2 0

3 0

4 0

5 0

0

0

0

0

0

)(xU

0

0

0

0

0

0

0

0

0

0

&

0

0

0

0

1

))1((&)0(TUBitShift

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 1 2 3 4 5

P = a b a a c

An example j = 2

0

1

1

0

1

)(aU

1 2 3 4 5 6 7 8 9 1

0

1 0 1

2 0 0

3 0 0

4 0 0

5 0 0

0

0

0

0

1

0

1

1

0

1

&

0

0

0

0

1

))2((&)1(TUBitShift

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 1 2 3 4 5

P = a b a a c

An example j = 3

0

0

0

1

0

)(bU

1 2 3 4 5 6 7 8 9 1

0

1 0 1 0

2 0 0 1

3 0 0 0

4 0 0 0

5 0 0 0

0

0

0

1

0

0

0

0

1

0

&

0

0

0

1

1

))3((&)2(TUBitShift

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 1 2 3 4 5

P = a b a a c

An example j = 8

0

1

1

0

1

)(aU

1 2 3 4 5 6 7 8 9 1

0

1 0 1 0 0 1 0 1 1

2 0 0 1 0 0 1 0 0

3 0 0 0 0 0 0 1 0

4 0 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0 0

0

1

0

0

1

0

1

1

0

1

&

0

1

0

1

1

))8((&)7(TUBitShift

 For i > 1, Entry M(i,j) = 1 iff

1) The first i-1 characters of P match the i-1characters

of T ending at character j-1.

2) Character P(i) ≡ T(j).

 1) is true when M(i-1,j-1) = 1.

 2) is true when the i’th bit of U(T(j)) = 1.

 The algorithm computes the and of these two bits.

Correctness

 1 2 3 4 5 6 7 8 9 10

T = x a b x a b a a c a

 a b a a c

Correctness

1 2 3 4 5 6 7 8 9 1

0

1 0 1 0 0 1 0 1 1 0 1

2 0 0 1 0 0 1 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0

4 0 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 0 1 0

 M(4,8) = 1, this is because a b a a is a prefix of P of length 4

that ends at position 8 in T.

 Condition 1) – We had a b a as a prefix of length 3 that ended

at position 7 in T ↔ M(3,7) = 1.

 Condition 2) – The fourth bit of P is the eighth bit of T ↔ The

fourth bit of U(T(8)) = 1.

 Formally the running time is Θ(mn).

 However, the method is very efficient if n is the size

of a single or a few computer words.

 Furthermore only two columns of M are needed at

any given time. Hence, the space used by the

algorithm is O(n).

How much did we pay?

AHO-CORASICK

Slides from Charles Yan

Search in keyword trees

 Naïve threading in keyword trees

do not remember the partial

matches

 P={apple, appropos}

 T=appappropos

 When threading

 app is a partial match

 But naïve threading will go back to the

root and re-thread app

 Define failure links

Failure Link

v: a node in keyword tree K

L(v): the label on v, that is, the concatenation of characters

on the path from the root to v.

lp(v): the length of the longest proper suffix of string L(v) that

is a prefix of some pattern in P. Let this substring be

Lemma. There is a unique node in the keyword tree that is labeled

by string Let this node be nv. Note that nv can be the root.

The ordered pair (v, nv) is called a failure link.

Failure Link

P={potato, tattoo, theater, other}

v

nv

Failure Link

Failure link computation is O(n)

Failure Link

x x p o t a t t o o x x

l=3 c=8

w

nw

Failure Link

x x p o t a t t o o x x

l=c-lp(w)=8-3=5 c=8

w

nw

Failure Link

How to construct failure links for a keyword tree in a linear time?

Let d be the distance of a node (v) from the root r.

 When d≤1, i.e., v is the root or v is one character away from r,

 then nv=r.

 Suppose nv has been computed for every node (v) with d ≤ k,

 we are going to compute nv for every node with d=k+1.

 v`: parent of v, then v` is k characters from r, that is d=k

 thus the failure link for v` has been computed. nv`

 x: the character on edge (v`, v)

Failure Link

v’

v

nv’

x

x

’

’

v’

v

nv’

x

x nv=w

(1) If there is an edge (nv`, w) out of nv` labeled with x, then

nv=w.

w

Failure Link

v’

v

nv’

nv

Failure Link

(2) If such an edge does not exist, examine nnv` to see if there

is an edge out of it labeled with x. Continue until the root.

v’

v

nv’

x

y

’

’

z

x w nnv’

v’

v

nv’

x

y

’

’

z

x w nnv’

’

’

’
’

’

’

Failure Link

(2) If such an edge does not exist, examine nnv` to see if there

is an edge out of it labeled with x. Continue until the root.

v’

v

nv’

x

y

’

’

z

x w nnv’

v’

v

nv’

x

y

’

’

z

x
nv=w

nnv’

’

’

’
’

’

’

Failure Link

v’

v

nnv’

nv’

nv

Failure Link

v’

v

nnv’

nv’

nv

Failure Link

Output: calculate nv for v

Algorithm nv

 v` is the parent of v in K

 x is the character on edge (v`, v)

 w=nv`

 while there is no edge out of w labeled with x and w≠r

 w=nw

 If there is an edge (w, w`) out of w labeled x then

 nv=w`

 else nv=r

Aho-Corasick Algorithm

Input: Pattern set P and text T

Output: all occurrences in T any pattern from P

Algorithm AC

l=1;

c=1;

w=root of K

Repeat

 while there is an edge (w, w’) labeled with T(c)

 if w` is numbered by pattern i then

 report that pi occurs in T starting at l;

 w=w’; c++;

 w=nw and l=c-lp(w);

Until c>m

SUFFIX ARRAYS

Slides from Tolga Can

Suffix arrays

 Suffix arrays were introduced by Manber and

Myers in 1993

 More space efficient than suffix trees

 A suffix array for a string x of length m is an

array of size m that specifies the lexicographic

ordering of the suffixes of x.

Suffix arrays

Example of a suffix array for acaaacatat$

3

4

1

5

7

9

2

6

8

10

11

Suffix array construction

 Naive in place construction

 Similar to insertion sort

 Insert all the suffixes into the array one by one

making sure that the new inserted suffix is in its

correct place

 Running time complexity:

 O(m2) where m is the length of the string

 Manber and Myers give a O(m log m)

construction.

Suffix arrays

 O(n) space where n is the size of the database

string

 Space efficient. However, there’s an increase in

query time

 Lookup query

 Based on binary search

 O(m log n) time; m is the size of the query

 Can reduce time to O(m + log n) using a more

efficient implementation

Searching for a pattern in Suffix Arrays

find(Pattern P in SuffixArray A):

 i = 0

 lo = 0, hi = length(A)

 for 0<=i<length(P):

 Binary search for x,y

 where P[i]=S[A[j]+i] for

lo<=x<=j<y<=hi

 lo = x, hi = y

 return {A[lo],A[lo+1],...,A[hi-1]}

Search example
 Search is in mississippi$

0 11 i$

1 8 ippi$

2 5 issippi$

3 2 ississippi$

4 1 mississippi$

5 10 pi$

6 9 ppi$

7 7 sippi$

8 4 sissippi$

9 6 ssippi$

10 3 ssissippi$

11 12 $

Examine the pattern letter

by letter, reducing the

range of occurrence each

time.

First letter i:

 occurs in indices from 0

to 3

So, pattern should be

between these indices.

Second letter s:

 occurs in indices from 2 to

3

Done.

Output: issippi$ and

ississippi$

Suffix Arrays

 It can be built very fast.

 It can answer queries very fast:

 How many times ATG appears?

 Disadvantages:

 Can’t do approximate matching

 Hard to insert new stuff (need to rebuild the array)

dynamically.

