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 Define M to be a binary n by m matrix such that: 

 

M(i,j) = 1 iff the first i characters of P exactly match 

the i characters of T ending at character j.  

 

 M(i,j) = 1 iff P[1 .. i] ≡ T[j-i+1 .. j] 

 

The Shift-And Method 



 Let T = california  

 Let P = for 

 

 

 

M =  

  

 

 

 M(i,j) = 1 iff the first i characters of P exactly 

match the i characters of T ending at character j. 

The Shift-And Method 

1 2 3 4 5 6 7 8 9 m = 10 

1 0 0 0 0 1 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 0 0 0 1 0 0 0 



How to construct M 

 We will construct M column by column. 

 Two definitions: 

 Bit-Shift(j-1) is the vector derived by shifting the 

vector for column j-1 down by one and setting the first 

bit to 1. 

 Example: 
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 We define the n-length binary vector U(x) for each 

character x in the alphabet. U(x) is set to 1 for the 

positions in P where character x appears. 

 Example:  

 

 

 

P = abaac 

   

How to construct M 
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 Initialize column 0 of M to all zeros 

 For j > 1 column j is obtained by 

 

 

   

How to construct M 
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      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

      1 2 3 4 5 

P = a b a a c 

An example j = 1 

1 2 3 4 5 6 7 8 9 1
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      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

      1 2 3 4 5 

P = a b a a c 

An example j = 2 
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      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

      1 2 3 4 5 

P = a b a a c 

An example j = 3 
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1 2 3 4 5 6 7 8 9 1

0 

1 0 1 0 

2 0 0 1 

3 0 0 0 

4 0 0 0 
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      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

      1 2 3 4 5 

P = a b a a c 

An example j = 8 
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1 2 3 4 5 6 7 8 9 1

0 

1 0 1 0 0 1 0 1 1 

2 0 0 1 0 0 1 0 0 

3 0 0 0 0 0 0 1 0 

4 0 0 0 0 0 0 0 1 

5 0 0 0 0 0 0 0 0 
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 For i > 1, Entry M(i,j) = 1 iff 

1) The first i-1 characters of P match the i-1characters 

of T ending at character j-1. 

2) Character P(i) ≡ T(j). 

 

 1) is true when M(i-1,j-1) = 1. 

 2) is true when the i’th bit of U(T(j)) = 1. 

 

 The algorithm computes the and of these two bits. 

 

Correctness  



      1 2 3 4 5 6 7 8 9 10  

T = x a b x a b a a c a  

          a b a a c 

Correctness 

1 2 3 4 5 6 7 8 9 1

0 

1 0 1 0 0 1 0 1 1 0 1 

2 0 0 1 0 0 1 0 0 0 0 

3 0 0 0 0 0 0 1 0 0 0 

4 0 0 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 0 0 0 1 0 

 M(4,8) = 1, this is because a b a a is a prefix of P of length 4 

that ends at position 8 in T. 

 Condition 1) – We had a b a as a prefix of length 3 that ended 

at position 7 in T ↔ M(3,7) = 1. 

 Condition 2) – The fourth bit of P is the eighth bit of T  ↔ The 

fourth bit of U(T(8)) = 1. 



 Formally the running time is Θ(mn). 

 However, the method is very efficient if n is the size 

of a single or a few computer words. 

 Furthermore only two columns of M are needed at 

any given time. Hence, the space used by the 

algorithm is O(n). 

 

 

 

 

 

 

How much did we pay? 



AHO-CORASICK 
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Search in keyword trees 

 Naïve threading in keyword trees 

do not remember the partial 

matches 

 P={apple, appropos} 

 T=appappropos 

 When threading 

 app is a partial match 

 But naïve threading will go back to the 

root and re-thread app 

 Define failure links 



Failure Link 

v: a node in keyword tree K 

L(v): the label on v, that is, the concatenation of characters 

on the path from the root to v.  

lp(v): the length of the longest proper suffix of string L(v) that 

is a prefix of some pattern in P. Let this substring be 

Lemma. There is a unique node in the keyword tree that is labeled 

by string Let this node be nv. Note that nv can be the root. 

 

The ordered pair (v, nv) is called a failure link.  



Failure Link 

P={potato, tattoo, theater, other} 

v 

nv 



Failure Link 

Failure link computation is O(n) 



Failure Link 

x x p    o  t  a  t   t o o x x 

l=3 c=8 

w 

nw 



Failure Link 

x x p o   t   a    t      t   o     o   x x 

l=c-lp(w)=8-3=5 c=8 

w 

nw 



Failure Link 

How to construct failure links for a keyword tree in a linear time? 

 

Let d be the distance of a node (v) from the root r. 

 When d≤1, i.e., v is the root or v is one character away from r, 

 then nv=r. 

 Suppose nv has been computed for every node (v) with d ≤ k, 

 we are going to compute nv for every node with d=k+1.  

  v`:  parent of v, then v` is k characters from r, that is d=k 

   thus the failure link for v` has been computed. nv` 

  x: the character on edge (v`, v) 



Failure Link 
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(1) If there is an edge (nv`, w) out of nv` labeled with x, then 

nv=w. 
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Failure Link 
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Failure Link 

(2) If such an edge does not exist, examine nnv` to see if there 

is an edge out of it labeled with x. Continue until the root. 
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Failure Link 

(2) If such an edge does not exist, examine nnv` to see if there 

is an edge out of it labeled with x. Continue until the root. 
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Failure Link 
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Failure Link 

v’ 

v 

nnv’ 

nv’ 

nv 



Failure Link 

Output: calculate nv for v 

Algorithm nv 

 v` is the parent of v in K 

 x is the character on edge (v`, v) 

 w=nv`  

 while there is no edge out of w labeled with x and w≠r 

  w=nw 

 If there is an edge (w, w`) out of w labeled x then  

  nv=w` 

 else nv=r 

 



Aho-Corasick Algorithm 

Input: Pattern set P and text T 

Output: all occurrences in T any pattern from P 

Algorithm AC 

l=1; 

c=1; 

w=root of K 

Repeat 

 while there is an edge (w, w’) labeled with T(c) 

  if w` is numbered by pattern i then 

   report that pi occurs in T starting at l; 

  w=w’; c++; 

 w=nw and l=c-lp(w); 

Until c>m 



SUFFIX ARRAYS 

Slides from Tolga Can 



Suffix arrays 

 Suffix arrays were introduced by Manber and 

Myers in 1993 

 More space efficient than suffix trees 

 A suffix array for a string x of length m is an 

array of size m that specifies the lexicographic 

ordering of the suffixes of x. 



Suffix arrays 

Example of a suffix array for acaaacatat$ 
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Suffix array construction 

 Naive in place construction 

 Similar to insertion sort 

 Insert all the suffixes into the array one by one 

making sure that the new inserted suffix is in its 

correct place 

 Running time complexity: 

 O(m2) where m is the length of the string 

 Manber and Myers give a O(m log m) 

construction. 



Suffix arrays 

 O(n) space where n is the size of the database 

string 

 Space efficient. However, there’s an increase in 

query time 

 Lookup query 

 Based on binary search 

 O(m log n) time; m is the size of the query 

 Can reduce time to O(m + log n) using a more 

efficient implementation 

 



Searching for a pattern in Suffix Arrays 

 

find(Pattern P in SuffixArray A): 

   i = 0 

   lo = 0, hi = length(A) 

    for 0<=i<length(P): 

       Binary search for x,y                        

       where P[i]=S[A[j]+i] for 

lo<=x<=j<y<=hi 

       lo = x, hi = y 

    return {A[lo],A[lo+1],...,A[hi-1]} 

 



Search example 
 Search is in mississippi$ 

0 11 i$ 

1 8 ippi$ 

2 5 issippi$ 

3 2 ississippi$ 

4 1 mississippi$ 

5 10 pi$ 

6 9 ppi$ 

7 7 sippi$ 

8 4 sissippi$ 

9 6 ssippi$ 

10 3 ssissippi$ 

11 12 $ 

Examine the pattern letter 

by letter, reducing the 

range of occurrence each 

time. 

First letter i: 

   occurs in indices from 0 

to 3 

 

So, pattern should be 

between these indices. 

Second letter s: 

   occurs in indices from 2 to 

3 

 

Done. 

Output: issippi$ and 

ississippi$ 



Suffix Arrays 

 It can be built very fast. 

 It can answer queries very fast:  

 How many times ATG appears? 

 Disadvantages:  

 Can’t do approximate matching 

 Hard to insert new stuff (need to rebuild the array) 

dynamically. 


