CS481: Bioinformatics
Algorithms

Can Alkan
EA224
calkan@cs.bilkent.edu.tr

http://Iwww.cs.bilkent.edu.tr/~calkan/teaching/cs481/

The Shift-And Method

m Define M to be a binary n by m matrix such that:

M(i,j) = 1 iff the first i characters of P exactly match
the i characters of T ending at character J.

M(ij) = 1iff P[1 ..] = T[j-i+1 .. j]

The Shift-And Method

m Let T = california
m LetP =for

1123456 |7]8|9 | m=10

1 lolo|lolo|l1]l0]l0]|O0]|O 0
M=]| 2 |o]lo|o|lo]jo|1]0]|01|0O 0
3 lololo|lolo]|lO|1]0]0 0

= M(i,j) = 1 iff the first i characters of P exactly
match the i characters of T ending at character j.

How to construct M

= We will construct M column by column.
= Two definitions:

m Bit-Shift(j-1) is the vector derived by shifting the

vector for column j-7 down by one and setting the first
bit to 1.

= Example:
0 M
(1] O]
BitShiﬁ(Il }): 1}
0] |1

1]
1) 10

How to construct M

= \We define the n-length binary vector U(x) for each
character x in the alphabet. U(x) is set to 7 for the
positions in P where character x appears.

= Example:

1) 0 0]
10 1] |01
P = abaac U(a)=|1I U(b)=IOI U(c)ZIOI
o e
\0) \0) \1)

How to construct M

m Initialize column 0 of M to all zeros
m Forj>1 columnjis obtained by

M(j) = BitShift(j—)~ J(T()))

An example j = 1

1

2(3|4|5|6|7|8]9

1

12345678910
Xxabxabaaca

12345

T=

o O O O O
N~ .
I
o -~
o O O O O
N _
3
o - - - - = BN
—_ o O O O
N~ .
Il
~
~
p—
| —

N
| —
~
3
~
-}
ey
=
-~
Q
‘

Q
- - - - _/~

=2

An example ;

1

2(3|4|5|6|7|8]9

1

12345678910
Xxabxabaaca

12345

T=

T T T T T ™~
—_ O - - O
N—— - _

3
T -~
—_— O O O O
N— . -/

Il

~

—_

@\l

~

&

~

~

3

—~

—

g

A

-~

Q

‘

Q
o T T N

=3

An example ;

— O
(@)
(0 0)
N
o
9]
<t
o O|l—|O|O| O
[Q\| — | OO | O| O
-— O OO O| O
— | N[T | O
© ©
o ©
oo @©
N~ @©
o L
nw © 1n ©
< X ¢ ©
M O ¢ ©
N © N 2
- X «~ @©
I ||
= o

T T T RN
o - O O O
N— . —_

[
- ™~
o —~ O O O
N—— _

3
T T T = BN
—_—— o O O
N— _—

Il

~

~

(@)

\—

Sy

S

~

@\

g

T

Q

‘'

Q
T BN

=3

An example ;

— O
(@)
(00 — OO — | O
N — | O|— | O] O
(o) O~ OO | O
9] — OO O | O
< OO O | O] O
o O~ OO | O
[Q\| — | OO | O| O
-— O OO O| O
— | N[T | O

© ©
o ©
oo @©
N~ @©
o L
nw © 1n ©
< X < ©
M O ¢ ©
N © N 2
- X «~ @©

I ||

= o

BitShift(7) & U(T(8))

Correctness

m Fori>1, Entry M(i,j) = 1 iff
1) The first i-1 characters of P match the /-1characters
of T ending at character j-1.

2) Character P(/) = T()).

= 1)istrue when M(i-1,-1) = 1.
m 2)is true when the /’th bit of U(T(j)) = 1.

= The algorithm computes the and of these two bits.

Correctness

12345678910 112(3|4|5|6[7[8]|9]1
T=xabxabaaca 0
110(1]0]0|1]0[|1]1]0]1

abaac ololol1]o]lol1]o]o]o0]o0
3lo|lo|ojojolol1]0]|0]0O
4l0lo|lo0|0|0|OjO|1|l0]O
5/0/0|0l0|0o|lO|0O]|O]|1]0

M(4,8) = 1, this is because a b a a is a prefix of P of length 4

that ends at position 8 in T.

Condition 1) — We had a b a as a prefix of length 3 that ended

at position 7 in T <~ M(3,7) = 1.

Condition 2) — The fourth bit of P is the eighth bitof T <> The

fourth bit of U(T(8)) = 1.

How much did we pay?

= Formally the running time is ©(mn).

= However, the method is very efficient if n is the size
of a single or a few computer words.

= Furthermore only two columns of M are needed at
any given time. Hence, the space used by the
algorithm is O(n).

Slides from Charles Yan

AHO-CORASICK

Search in keyword trees

Nalve threading in keyword trees
do not remember the partial
matches

P={apple, appropos}
T=appappropos

When threading S Y IR R

o app is a partial match

o But naive threading will go back to the Q
root and re-thread app “‘

O
O

Define failure links

Failure Link

v: a node in keyword tree K

L(v): the label on v, that is, the concatenation of characters
on the path from the root to v.

Ip(v): the length of the suffix of string L(v) that
Is a prefix of some pattern in P. Let this substring be

Lemma. There 1s a unique node in the keyword tree that 1s labeled
by string a. Let this node be n,. Note that n, can be the root.

The ordered pair (v, n,) 1s called a failure link.

Failure Link

P={potato, tattoo, theater, other}

12
L

Failure Link

-
B

Failure link computation is O(n)

Failure Link

=3 c=8
4 -
XXP ot at t;ooxx

Failure Link

I=c-lp(w)=8-3=5 =8

xxpo fa t to o xx

Failure Link

How to construct failure links for a keyword tree in a linear time?

Let d be the distance of a node (v) from the root r.

When d<l, i.e., v is the root or v 1s one character away fromr,
then n =r.

Suppose n, has been computed for every node (v) with d <k,
we are going to compute n, for every node with d=k+1.

v . parent of v, then v' 1s k characters from r, that 1s d=k
thus the failure link for v’ has been computed. n,.

x: the character on edge (v, v)

Failure Link

(1) If there is an edge (n,., w) out of n,. labeled with x, then
n,=w.

Failure Link

]
M

Failure Link

(2) If such an edge does not exist, examine n, - to see if there
IS an edge out of it labeled with x. Continue until the root.

Failure Link

(2) If such an edge does not exist, examine n, - to see if there
IS an edge out of it labeled with x. Continue until the root.

Failure Link

-2
L

Failure Link

12
L

Failure Link

Output: calculate n for v
Algorithm n,,

v’ is the parentof vin K

X is the character on edge (v, V)

w=n,,

while there is no edge out of w labeled with x and w#r
w=n,,

If there is an edge (w, w') out of w labeled x then
n,2=w

else n=r

Aho-Corasick Algorithm

Input: Pattern set P and text T
Output: all occurrences in T any pattern from P
Algorithm AC
[=1;
c=1;
w=root of K
Repeat
while there is an edge (w, w’) labeled with T(c)
if W is numbered by pattern j then
report that p, occurs in T starting at /;
W=W’; C++;
w=n,, and /=c-lp(w);
Until c>m

Slides from Tolga Can

SUFFIX ARRAYS

Suftix arrays

Suffix arrays were introduced by Manber and
Myers in 1993

More space efficient than suffix trees

A suffix array for a string x of length m is an
array of size m that specifies the lexicographic
ordering of the suffixes of x.

Suftix arrays

Example of a suffix array for acaaacatat$

0 | aaacatat$ |3
1 | aacatat$ 4
2 | acaaacatat$ |1
3 | acatat$ 5
4 | atat$ 7
5 | at$ 9
6 | caaacatat$ |2
7 | catat$ 6
8 | tat$ 8
9 | t$ 10
10 9% 11

Sufttix array construction

Naive in place construction

o Similar to insertion sort

o Insert all the suffixes into the array one by one
making sure that the new inserted suffix is in its

correct place
o Running time complexity:
O(m?) where m is the length of the string
Manber and Myers give a O(m log m)
construction.

Suftix arrays

O(n) space where n is the size of the database
string
Space efficient. However, there's an increase in
guery time
Lookup query

o Based on binary search

o O(mlog n) time; mis the size of the query

o Can reduce time to O(m + log n) using a more
efficient implementation

Searching for a pattern in Suttix Arrays

find (Pattern P in SuffixArray A):
i=0
lo = 0, hi = length(A)
for 0<=i<length (P):
Binary search for x,y

where P[i1]=S[A[]j]+1] for
lo<=x<=7j<y<=hi

lo = x, hi

Y
return {A[lo],A[lo+l1l],...,A[hi-1]}

Search example
Search is in mississippi$

Examine the pattern letter
by letter, reducing the
range of occurrence each
time.

First letter i:
occurs in indices from 0
to 3

So, pattern should be
between these indices.
Second letter s:

occurs in indices from 2 to
3

Done.
Output: issippi$ and
ississippi$

i

ippid

issippi$

ississippid

mississippi$

pi%

ppi$

sippi$

sissippi$

ssippi$

ssissippid

el N|lojo|dw|Nd|[=|O

$

Suftix Arrays

It can be built very fast.

It can answer queries very fast:
o How many times ATG appears?

Disadvantages:
o Can’t do approximate matching

o Hard to insert new stuff (need to rebuild the array)
dynamically.

