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Outline 

 DNA Sequence Comparison 

 Change Problem 

 Manhattan Tourist Problem 

 Longest Paths in Graphs  

 Sequence Alignment 

 Edit Distance 

 Longest Common Subsequence Problem 

 Dot Matrices 



DNA sequence comparison 

 Gene similarities between two genes with 
known and unknown function alert biologists 
to some possibilities 

 Computing a similarity score between two 
genes tells how likely it is that they have 
similar functions 

 Dynamic programming is a technique for 
revealing similarities between genes 

 The Change Problem is a good problem to 
introduce the idea of dynamic programming 



The Change Problem 

Goal: Convert some amount of money M 

into given denominations, using the 

fewest possible number of coins 

Input: An amount of money M, and an array of 

d denominations c = (c1, c2, …, cd), in a 

decreasing order of value (c1 > c2 > … > cd) 
Output: A list of d integers i1, i2, …, id such 

that  
c1i1 + c2i2 + … + cdid = M 

and i1 + i2 + … + id is minimal 



Change Problem: Example 

Given the denominations 1, 3, and 5, what 

is the minimum number of coins needed to 

make change for a given value? 

1 2 3 4 5 6 7 8 9 10 

1 1 1 

Value 

Min # of coins 

Only one coin is needed to make change 

for the values 1, 3, and 5 



Change Problem: Example (cont’d) 

Given the denominations 1, 3, and 5, what 

is the minimum number of coins needed to 

make change for a given value? 

1 2 3 4 5 6 7 8 9 10 

1 2 1 2 1 2 2 2 

Value 

Min # of coins 

However, two coins are needed to make 

change for the values 2, 4, 6, 8, and 10. 



Change Problem: Example (cont’d) 

1 2 3 4 5 6 7 8 9 10 

1 2 1 2 1 2 3 2 3 2 

Value 

Min # of coins 

Lastly, three coins are needed to make 

change for the values 7 and 9 

Given the denominations 1, 3, and 5, what 

is the minimum number of coins needed to 

make change for a given value? 



Change Problem: Recurrence 

This example is expressed by the following 

recurrence relation: 

minNumCoins(M)  = 

minNumCoins(M-1) + 1 

minNumCoins(M-3) + 1 

minNumCoins(M-5) + 1 

min of 



Change Problem: Recurrence (cont’d) 

Given the denominations c: c1, c2, …, cd, 

the recurrence relation is: 

minNumCoins(M)  = 

minNumCoins(M-c1) + 1 

minNumCoins(M-c2) + 1 

… 

minNumCoins(M-cd) + 1 

min of 



Change Problem: A Recursive Algorithm 

1. RecursiveChange(M,c,d) 

2.    if M = 0 

3.       return 0 

4.    bestNumCoins  infinity 

5.    for i  1 to d 

6.       if M ≥ ci 

7.          numCoins  RecursiveChange(M – ci , c, d) 

8.           if numCoins + 1 < bestNumCoins 

9.             bestNumCoins  numCoins + 1 

10.  return bestNumCoins  



RecursiveChange Is Not Efficient 

 It recalculates the optimal coin combination 

for a given amount of money repeatedly 

 

 i.e., M = 77, c = (1,3,7): 

 Optimal coin combo for 70 cents is 

computed 9 times! 



The RecursiveChange Tree 

74 

77 

76 70 

75 73 69 73 71 67 69 67 63 

74 72 68 

72 70 66 

68 66 62 

72 70 66 

70 68 64 

66 64 60 

68 66 62 

66 64 60 

62 60 56 

. . . . . . 
70 70 70 70 70 



We Can Do Better 

 We’re re-computing values in our algorithm more 
than once 

 

 Save results of each computation for 0 to M  

 

 This way, we can do a reference call to find an 
already computed value, instead of re-computing 
each time 

 Running time M*d, where M is the value of money 

and d is the number of denominations  

 



The Change Problem: Dynamic Programming 

1. DPChange(M,c,d) 

2.    bestNumCoins0  0 

3.    for m  1 to M 

4.       bestNumCoinsm  infinity 

5.       for i   1 to d 

6.          if m ≥ ci 

7.             if bestNumCoinsm – ci
+ 1  < bestNumCoinsm 

8.                bestNumCoinsm  bestNumCoinsm – ci
+ 1  

9.    return bestNumCoinsM  

 



DPChange: Example 

0 

0 1 

0 1 2 

0 1 2 3 

0 1 2 3 4 

0 1 2 3 4 5 

0 1 2 3 4 5 6 

0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 9 

0 1 

0 

0 1 2 

0 1 2 1 

0 1 2 1 2 

0 1 2 1 2 3 

0 1 2 1 2 3 2 

0 1 2 1 2 3 2 1 

0 1 2 1 2 3 2 1 2 

0 1 2 1 2 3 2 1 2 3 

c = (1,3,7) 

M = 9 



Manhattan Tourist Problem (MTP) 

Imagine seeking a 

path (from source 

to sink) to travel 

(only eastward 

and southward) 

with the most 

number of 

attractions (*) in 

the Manhattan 

grid 

Sink 
* 

* 

* 

* 

* 

* * 

* * 

* 

* 

Source 

* 



Manhattan Tourist Problem (MTP) 

Imagine seeking a 

path (from source 

to sink) to travel 

(only eastward 

and southward) 

with the most 

number of 

attractions (*) in 

the Manhattan 

grid 

Sink 
* 

* 

* 

* 

* 

* * 

* * 

* 

* 

Source 

* 



Manhattan Tourist Problem: Formulation 

Goal: Find the longest path in a weighted 

grid. 

Input: A weighted grid G with two distinct 

vertices, one labeled “source” and the 

other labeled “sink” 

Output: A longest path in G from 

“source” to “sink” 



MTP: An Example 
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MTP: Greedy Algorithm Is Not Optimal 

1 2 5 

 2 1 5 

2 3 4 

0 0 0 

5 

3 

0 

3 

5 

0 

10 

3 

5 

5 

1 

2 
promising 

start, but 

leads to bad 

choices! 

source 

sink 
18 

22 



MTP: Simple Recursive Program 

MT(n,m) 

   if n=0  or m=0 

      return MT(n,m) 

   x  MT(n-1,m)+ 

                   length of the edge from (n- 1,m) to (n,m) 

   y  MT(n,m-1)+ 

                   length of the edge from (n,m-1) to (n,m) 

   return max{x,y} 

 

 

 



MTP: Simple Recursive Program 

MT(n,m) 

   x  MT(n-1,m)+ 

                   length of the edge from (n- 1,m) to (n,m) 

   y  MT(n,m-1)+ 

                   length of the edge from (n,m-1) to (n,m) 

   return min{x,y} 

 

What’s wrong with this approach? 

 



1 

5 

0 1 

0 

1 

i 

source 

1 

5 

S1,0 = 5 

S0,1 = 1 

• Calculate optimal path score for each vertex in the graph 

• Each vertex’s score is the maximum of the prior vertices 

score plus the weight of the respective edge in between 

MTP: Dynamic Programming 

j 



MTP: Dynamic Programming (cont’d) 

1 2 

5 

3 

0 1 2 

0 

1 

2 

source 

1 3 

5 

8 

4 

S2,0 = 8 

i 

S1,1 = 4 

S0,2 = 3 
3 

-5 

j 



MTP: Dynamic Programming (cont’d) 

1 2 

5 

3 

0 1 2 3 
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5 

8 
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4 

0 

5 

8 

10 3 

5 

-5 

9 

13 

1 -5 

S3,0 = 8 

S2,1 = 9 
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S3,0 = 8 

j 



MTP: Dynamic Programming (cont’d) 

greedy alg. 

fails! 

1 2 5 

-5 1 -5 

-5 3 

0 

5 

3 

0 
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-5 
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S2,2 = 12 

S1,3 = 8 
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MTP: Dynamic Programming (cont’d) 

1 2 5 

-5 1 -5 

-5 3 3 
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S3,2 = 9 

S2,3 = 15 



MTP: Dynamic Programming (cont’d) 

1 2 5 

-5 1 -5 

-5 3 3 
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5 

3 

0 

3 

5 

0 

10 

-3 

-5 

-5 

2 

0 1 2 3 

0 

1 
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3 
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4 
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13 8 

12 
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j 

0 

1 

16 
S3,3 = 16 

(showing all back-traces) 

Done! 



MTP: Recurrence 

Computing the score for a point (i,j) by the 

recurrence relation: 

si, j   = 
max  

si-1, j + weight of the edge between (i-1, j) and 

(i, j)  

si, j-1 + weight of the edge between (i, j-1) and 

(i, j) 

The running time is n x m  for a n by m grid 

(n = # of rows, m = # of columns) 

  



Manhattan Is Not A Perfect Grid 

What about diagonals? 

• The score at point B is given by: 

sB  = 
max 

of 

sA1 + weight of the edge  (A1, B) 

sA2 + weight of the edge  (A2, B) 

sA3 + weight of the edge  (A3, B) 

B 

A3 

A1 

A2 



Manhattan Is Not A Perfect Grid (cont’d) 

Computing the score for point x is given by the 

recurrence relation: 

sx  =  
max  

of 

sy + weight of vertex (y, x) where  

                     y є Predecessors(x) 

• Predecessors (x) – set of vertices that have  edges 

leading to x  

•The running time for a graph G(V, E)                        

(V is the set of all vertices and E is the set of all edges)      

is O(E) since each edge is evaluated once 



Traveling in the Grid 

•The only hitch is that one must decide on the  

order in which visit the vertices  

•By the time the vertex x is analyzed, the 

values sy for all its predecessors y should be 

computed – otherwise we are in trouble.  

•We need to traverse the vertices in some 

order 

•Try to find such order for a directed cycle 

  



DAG: Directed Acyclic Graph 

• Since Manhattan is not a perfect regular grid, 

we represent it as a DAG  



Longest Path in DAG Problem 

• Goal: Find a longest path between two 

vertices in a weighted DAG 

 

• Input: A weighted DAG G with source and 

sink vertices 

 

• Output: A longest path in G from source to 

sink 



Longest Path in DAG: Dynamic Programming  

• Suppose vertex v has indegree 3 and 

predecessors {u1, u2, u3} 

• Longest path to v  from source is: 

 

 

 

In General:  

 sv = maxu  (su + weight of edge from u to v)  

sv = max 

of 

su1 + weight of edge from u1 to v  

su2 + weight of edge from u2 to v  

su3 + weight of edge from u3 to v  

 



Traversing the Manhattan Grid  

• 3 different strategies: 

• a) Column by 
column 

• b) Row by row 

• c) Along diagonals 

a) b) 

c) 



ALIGNMENT 



Alignment: 2 row representation  

Alignment :  2 * k matrix ( k > m, n ) 

A T -- G T A T -- 

A T C G -- A -- C 

letters of v 

letters of w 

T 

T 

A T C T G A T 
T G C A T A 

v  : 
w : 

m = 7  
n = 6  

5 matches 2 insertions 2 deletions 

Given 2 DNA sequences v and w: 



Aligning DNA Sequences 

V  = ATCTGATG 

W = TGCATAC 

n = 8 

m = 7 

A T C T G A T G 

T G C A T A C 

V  

W  

match 

deletion 
insertion 

mismatch 

indels 

4 
1 
2 
2 

 matches 
 mismatch 
 insertions 

 deletions  



Longest Common Subsequence (LCS) – Alignment 

without Mismatches 

•  Given two sequences  

            v = v1 v2…vm and w = w1 w2…wn 

•  The LCS of v and w is a sequence of positions in  

 v: 1 < i1 < i2 < … < it < m 

and a sequence of positions in  

 w: 1 < j1 < j2 < … < jt < n 

such that it -th letter of v equals to jt-letter of w and t 

is maximal 



LCS: Example 

A T -- C T G A T C 

-- T G C T -- A -- C 

elements of v 

elements of w 

-- 

A 

1 

2 

0 

1 

2 

2 

3 

3 

4 

3 

5 

4 

5 

5 

6 

6 

6 

7 

7 

8 

j coords: 

i coords: 

Matches shown in 

red 

positions in v: 

positions in w:  

2 < 3 < 4 < 6 < 8 

1 < 3 < 5 < 6 < 7 

Every common subsequence is a path in 2-D 

grid 

0 

0 

(0,0) (1,0) (2,1) (2,2) (3,3) (3,4) (4,5) (5,5) (6,6) (7,6) (8,7) 



LCS Problem as Manhattan Tourist Problem 
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Edit Graph for LCS Problem 

T 
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C 

A 
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0 1 2 3 4 5 6 7 8 
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Edit Graph for LCS Problem 

T 

G 

C 

A 

T 

A 

C 

1 

2 

3 

4 

5 

6 

7 

0 i 

A T C T G A T C 
0 1 2 3 4 5 6 7 8 

j 

Every path is a 

common 

subsequence. 

Every diagonal 

edge adds an 

extra element to 

common 

subsequence 

LCS Problem: 

Find a path with 

maximum 

number of 

diagonal edges 



Computing LCS 

Let vi   =   prefix of v of length i:    v1 … vi 

and wj  =  prefix of w of length j:   w1 … wj 

The length of LCS(vi,wj) is computed by: 

si, j  

= 

max 
si-1, j 

si, j-1 

si-1, j-1  + 1  if  vi = wj  



Computing LCS (cont’d) 

si,j = MAX  

si-1,j    + 0  

si,j -1   + 0  
si-1,j -1 + 1,    if  vi = wj 

i,j 

i-1,j 

i,j -1 

i-1,j -1 

1 0 

0 



Every Path in the Grid Corresponds to an 

Alignment  

0 1 2 3 4 

0 

1 

2 

3 

4 

W A T C G 

A 

T 

G 

T 

V 
            

      0 1 2  2  3 4 

V =    A T -  G T 

          |  |       | 

W=    A T C G – 

       0 1 2  3 4 4 

 



DISTANCE BETWEEN 

STRINGS 



Aligning Sequences without Insertions and 

Deletions: Hamming Distance 

Given two DNA sequences v and w : 

v  : 

• The Hamming distance: dH(v, w)  =  8 is 

large but the sequences are very similar 

 

A T A T A T A T 

A T A T A T A T w : 



Aligning Sequences with Insertions and 

Deletions 

v  : A T A T A T A T 

A T A T A T A T w : -- 

-- 

By shifting one sequence over one 

position: 

• The edit distance: dH(v, w)  =  2. 

• Hamming distance neglects insertions and 

deletions in DNA 



Edit Distance 

Levenshtein (1966) introduced edit distance 

between two strings as the minimum number 

of elementary operations (insertions, deletions, 

and substitutions) to transform one string into 

the other 

 

d(v,w) = MIN number of elementary operations  

to transform v  w  



Edit Distance vs Hamming Distance 

V  = ATATATAT 

W = TATATATA 

Hamming distance  

always compares  

 i-th letter of v  with 

 i-th letter of w 

Hamming distance: 

      d(v, w)=8 
Computing Hamming distance 

          is a trivial task.  
                



Edit Distance vs Hamming Distance 

V  = ATATATAT 

W = TATATATA 

Hamming distance:                    Edit distance:  

      d(v, w)=8                               d(v, w)=2  
Computing Hamming distance             Computing edit distance  

           is a trivial task                             is a non-trivial task 

 
                

W = TATATATA 

Just one shift 

Make it all line up 

V  = - ATATATAT 

Hamming distance  

always compares  

 i-th letter of v  with 

 i-th letter of w 

Edit distance  

may compare  

 i-th letter of v  with 

 j-th letter of w 



Edit Distance vs Hamming Distance 

V  = ATATATAT 

W = TATATATA 

Hamming distance:                    Edit distance:  

      d(v, w)=8                               d(v, w)=2  

                                                (one insertion and one deletion) 

How to find what j goes with what i ??? 

 

W = TATATATA 

V  = - ATATATAT 

Hamming distance  

always compares  

 i-th letter of v  with 

 i-th letter of w 

Edit distance  

may compare  

 i-th letter of v  with 

 j-th letter of w 



Edit Distance: Example 

TGCATAT  ATCCGAT in 5 steps 

 

TGCATAT    (delete last T) 

TGCATA      (delete last A) 

TGCAT        (insert A at front) 

ATGCAT      (substitute C for 3rd G) 

ATCCAT      (insert G before last A)  

ATCCGAT       (Done) 

  

 

    



Edit Distance: Example 

TGCATAT  ATCCGAT in 5 steps 

 

TGCATAT    (delete last T) 

TGCATA      (delete last A) 

TGCAT        (insert A at front) 

ATGCAT      (substitute C for 3rd G) 

ATCCAT      (insert G before last A)  

ATCCGAT       (Done) 

What is the edit distance?  5? 

 

    



Edit Distance: Example (cont’d) 

TGCATAT  ATCCGAT in 4 steps 

 

TGCATAT    (insert A at front) 

ATGCATAT  (delete 6th T) 

ATGCATA    (substitute G for 5th A) 

ATGCGTA    (substitute C for 3rd G) 

ATCCGAT  (Done) 

         

 



Edit Distance: Example (cont’d) 

TGCATAT  ATCCGAT in 4 steps 

 

TGCATAT    (insert A at front) 

ATGCATAT  (delete 6th T) 

ATGCATA    (substitute G for 5th A) 

ATGCGTA    (substitute C for 3rd G) 

ATCCGAT  (Done) 

       Can it be done in 3 steps??? 

 



The Alignment Grid  

• Every alignment 

path is from 

source to sink 



Alignment as a Path in the Edit Graph 

0 1 2 2 3 4 5 6 7 70 1 2 2 3 4 5 6 7 7  
    A T _ G T T A T _A T _ G T T A T _  
    A T C G T _ A _ CA T C G T _ A _ C  
0 1 2 3 4 5 5 6 6 7  0 1 2 3 4 5 5 6 6 7    
  
  
(0,0) , (1,1) , (2,2), (2,3), (0,0) , (1,1) , (2,2), (2,3), 
(3,4), (4,5), (5,5), (6,6), (3,4), (4,5), (5,5), (6,6), 
(7,6), (7,7)(7,6), (7,7)  

- Corresponding path - 



Alignments in Edit Graph (cont’d) 

   and       represent 

indels in v and w 

with score 0. 

 

   represent matches 

with score 1. 

• The score of the 

alignment path is 5. 

 



Alignment as a Path in the Edit Graph 

Every path in the edit 

graph corresponds to an 

alignment: 



Alignment as a Path in the Edit Graph 

Old AlignmentOld Alignment  
      01223012234545677677  
v=  AT_Gv=  AT_GTTTTAT_AT_      
w=  ATCGw=  ATCGT_T_A_CA_C  
      01234012345555667667      
  
 New AlignmentNew Alignment  
      01223012234545677677  
v=  AT_Gv=  AT_GTTTTAT_AT_      
w=  ATCGw=  ATCG_T_TA_CA_C  
      01234012344545667667 



Alignment as a Path in the Edit Graph 

      01201222343455667777  
v=  ATv=  AT__GTGTTTAATT__  
w=  ATw=  ATCCGTGT__AA__CC  
      01201233454555666677      
  
(0,0) , (1,1) , (2,2), (0,0) , (1,1) , (2,2), (2,3),(2,3),  

(3,4), (4,5), (3,4), (4,5), (5,5),(5,5),  (6,6), (6,6), 

(7,6),(7,6),  (7,7)(7,7)  

  



Alignment: Dynamic Programming 

 

si,j =           si-1, j-1+1 if vi = wj 

        max            si-1, j 

                  si, j-1 



Dynamic Programming Example 

Initialize 1st row and 

1st  column to be all 

zeroes.  

Or, to be more 

precise, initialize 0th 

row and 0th column 

to be all zeroes. 



Dynamic Programming Example 

 

Si,j =     Si-1, j-1 

      max     Si-1, j 

            Si, j-1 

value from NW +1, if vi = wj 

 value from North (top) 

 value from West (left) 



Alignment: Backtracking 

Arrows              show where the score 

originated from.    

        if from the top 

        if from the left 

        if vi = wj  

 



Backtracking Example 

Find a match in row and column 

2. 

 

i=2, j=2,5 is a match (T).              

       

j=2, i=4,5,7 is a match (T). 

 

Since vi = wj, si,j = si-1,j-1 +1 

 

s2,2 = [s1,1 = 1] + 1  
s2,5 = [s1,4 = 1] + 1 
s4,2 = [s3,1 = 1] + 1 
s5,2 = [s4,1 = 1] + 1 
s7,2 = [s6,1 = 1] + 1 



Backtracking Example 

Continuing with the 

dynamic 

programming  

algorithm gives this 

result. 



Alignment: Dynamic Programming 

 

si,j =           si-1, j-1+1 if vi = wj 

        max            si-1, j 

                  si, j-1 



Alignment: Dynamic Programming 

 

si,j =           si-1, j-1+1 if vi = wj 

        max            si-1, j+0 

                  si, j-1+0 

This recurrence corresponds to the Manhattan 

Tourist problem (three incoming edges into a  

vertex) with all horizontal and vertical edges 

weighted by zero.   



LCS Algorithm 

1. LCS(v,w) 

2.   for i  1 to n 

3.     si,0  0 

4.   for j  1 to m 

5.     s0,j  0 

6.   for i  1 to n 

7.     for j  1 to m 

8.                    si-1,j 

9.     si,j  max   si,j-1  

10.                    si-1,j-1 + 1, if vi = wj 

11.                  “   “   if  si,j = si-1,j 
          bi,j       “   “   if  si,j = si,j-1 
                            “   “   if  si,j = si-1,j-1 + 1 

    return (sn,m, b) 



Now What? 

 LCS(v,w) created the 
alignment grid 

 

 Now we need a way 
to read the best 
alignment of v and w 

 

 Follow the arrows 
backwards from sink 



Printing LCS: Backtracking 

1. PrintLCS(b,v,i,j) 

2.     if  i = 0 or j = 0 

3.           return 

4.     if bi,j = “     “ 

5.            PrintLCS(b,v,i-1,j-1) 

6.            print vi 

7.       else 

8.           if bi,j = “     “ 

9.      PrintLCS(b,v,i-1,j) 

10.        else 

11.              PrintLCS(b,v,i,j-1) 

 



LCS Runtime 

 It takes O(nm) time to fill in the nxm dynamic 

programming matrix. 

 

 

 



QUIZ 1 



DNA mapping 

∆ X = {0,1,2,3,3,5,5,7,8,8,10,12,13,13,15,16} 

Use the partial digest algorithm to find X 


