CS481: Bioinformatics
Algorithms

Can Alkan
EA224
calkan@cs.bilkent.edu.tr

http://Iwww.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Outline

DNA Sequence Comparison

Change Problem

Manhattan Tourist Problem

Longest Paths in Graphs

Sequence Alignment

Edit Distance

Longest Common Subsequence Problem
Dot Matrices

DNA sequence comparison

Gene similarities between two genes with
known and unknown function alert biologists
to some possibilities

Computing a similarity score between two
genes tells how likely it is that they have
similar functions

Dynamic programming is a technique for
revealing similarities between genes

The Change Problem is a good problem to
introduce the idea of dynamic programming

The Change Problem

Goal: Convert some amount of money M
into given denominations, using the
fewest possible number of coins

Input: An amount of money M, and an array of

d denominations ¢ = (¢4, C,, ..., C4), in a
decreasm? order of value (c, > ¢, >)
Output: A list of d integers i, i,, .. |0I sucﬁ
that

C]i] + cZiz + ... + Cdld — M
and i, +1i, + ... + iy is minimal

Change Problem: Example

Given the denominations 1, 3, and 5, what
is the minimum number of coins needed to
make change for a given value?

Value 1 2 3 4 5 6|7 89 10

Min # of coins

Only one coin is needed to make change
for the values 1, 3, and 5

Change Problem: Example (cont'd)

Given the denominations 1, 3, and 5, what
is the minimum number of coins needed to
make change for a given value?

Value 1 2 3 4 5 6 7 8 9 10
Min # of coins 2 2 2 2 2

=S

However, two coins are needed to make
change for the values 2, 4, 6, 8, and 10.

Change Problem: Example (cont'd)

Given the denominations 1, 3, and 5, what
is the minimum number of coins needed to
make change for a given value?

Value 1 2 3 4 5 6 7 8 9 10
Min#ofcoins |12 /11121232 3| 2

=

Lastly, three coins are needed to make
change for the values 7 and 9

Change Problem: Recurrence

This example is expressed by the following
recurrence relation:

minNumCoins(M) =

min of
<

/

minNumCoins(M-1) + 1
minNumCoins(M-3) + 1

minNumCoins(M-5) + 1

Change Problem: Recurrence (cont’d)

Given the denominations c: c,, c,, ..., Cg,
the recurrence relation is:

minNumCoins(M) =

min of<

/

-

minNumCoins(M-c,) + 1

minNumCoins(M-c,) + 1

minNumCoins(M-c,) + 1

Change Problem: A Recurstve Algorithm

RecursiveChange(M,c,d)
if M=0
return O
bestNumcCoins < infinity
fori< 1tod
if M=
numCoins < RecursiveChange(M- ¢;, ¢, d)
if numCoins + 1 < bestNumCoins
bestNumCoins € numCoins + 1
return bestNumCoins

RecurstveChange Is Not Etficient

It recalculates the optimal coin combination
for a given amount of money repeatedly

e, M=77,c=(1,3,7):
o Optimal coin combo for 70 cents is
computed 9 times!

The RecursiveChange Tree

77

76} (79 D

75 (13) (69) (13) (71) (67) (69) (67) (63)

@A@@ @@@ (96864 6 5@‘@ @A@‘@

727066 (72(7066) (666460 (66(64(60

We Can Do Better

We're re-computing values in our algorithm more
than once

Save results of each computation for O to M

This way, we can do a reference call to find an
already computed value, instead of re-computing
each time

x Running time M*d, where M is the value of money
and d is the number of denominations

The Change Problem: Dynamic Programming

DPChange(M,c,d)
bestNumCoins, € 0
form<1toM
bestNumCoins,, < infinity
fori € 1tod
if m=> ¢
if bestNumCoins,,_.+ 1 < bestNumCoins,,
bestNumCoins,, € bestNumCoins, _ .+ 1
return bestNum~Coins,

DPChange: Example

01 2 3 4 5 6
1

o

O o © o

2
01 2 3 4 5 6 7
2

01 2 3 45 6|7 8

AN (N
- |-

o o

01 2 3

01 2 3 45/ 6 7 8|9

01 2 3 4

(1,3,7)

C =
M=9

01 2 3 45
1

Manhattan Tourist Problem (MTP)

Imagine seeking a
path (from source
to sink) to travel
(only eastward
and southward)
with the most
number of
attractions (*) in
the Manhattan
grid

Source

Manhattan Tourist Problem (MTP)

Imagine seeking a

path (from source source—¢ T

to sink) to travel I l

(only eastward x .

and southward) | —

with the most | R T
number of J .
attractions (*) in e

the Manhattan
grid

Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted
grid.

Input: A weighted grid G with two distinct
vertices, one labeled “source” and the
other labeled “sink”

Output: A longest path in G from
“source” to “sink”

MTP: AnoExan}ple

2 3 4 . -
source | - i j coordinate
3 5} —(o0)2
0 """ 0 J >
1 0 2 4 3
A 4 2
1 - o | w———'<4 13)
1
4 6 2
8 v 4
‘“ IRCENO
S 2 - ‘ > K{ -
T 'GSJ 19
o
o 4 4 5 2 1
A \ \ 4 0 \4 2 ;/"
3 ________ > » > 7&20>
5 6 8 5 3
2 n
4 ----------- A p) Y 2 R/ -r23 SInk

MTP: Greedy Algorithm Is Not Optimal

A4

source @ >

promising
start, but
leads to bad

choices!

MTP: Simple Recursive Program

MT(n,m)
if n=0 or m=0
return MT(n,m)
X € MT(n-1,m)+
length of the edge from (n- 1,m) to (n,m)
y € MT(h,m-1)+
length of the edge from (n,m-1) to (n,m)
return max{x,y}

MTP: Simple Recursive Program

MT(n,m)
X € MT(n-1,m)+
length of the edge from (n- 1,m) to (n,m)
y € MT(h,m-1)+
length of the edge from (n,m-1) to (n,m)
return min{x,y}

What’s wrong with this approach?

MTP: Dynamic Programming

source

Calculate optimal path score for each vertex in the graph

Each vertex’'s score is the maximum of the prior vertices
score plus the weight of the respective edge in between

‘ MTP: Dynamic Programming (contd)

J
0 1 2
source \ = ;
[— 2,
1 3
| 5 3 SO,2 =
(e y S ¥
5 4
3 S

y I —— \ 4

‘ MTP: Dynamic Programming (conrd)

j

0 1 2 3
source g = g :
, \‘ 1 2 5
1 3 8
l 5 3 10 S30=
PR v -5 4 1 ¥
5 4 13
, - S,,=13
2 - B
8 9
0 82,1 = 9
Qo \ 4
8

‘ MTP: Dynamic Programming (contd)
]

0 1 2 3
source : 5 :
; \‘ 1 2 | 5
1 3 8
: 5 3 10 5
PR \ 4 S \4 1 R 5 oy
5 4 13 8
3 5 3 Si3=8
2 - N RN
8 9 12
0 0 S,,=12
0
3 oo = >
8 T 9
greedy alg. S31=9

fails!

‘ MTP: Dynamic Programming (contd)

J
0 1 2 3
source \ ! :
0 - C 1 2 : 5 N
1 3 8
' 5 3 10 5
PR v - \4 1 R 5 oy
5 4 13 8
3 5 3 2
2 -eeeeeee y -5 > 3 5
8 9 12 15
% ST Y 0 4 0 S
8 9 9

‘ MTP: Dynamic Programming (contd)

J
0 1 2 3
source\ 5 : 5 :
0 - C 1 2 i 2 >
L 3 8 Done!
' 5 3 10 5
PR \ 4 -5 \ 4 1 3 -5 R
5 4 13 8
3 5 -3 2| (showing all back-traces)
2 -eeeeeee y -5 - 3 S
8 9 12 15
0 0 5 1
% ST Y 0 \ 4 0 \ 4 0 ‘
8 9 9 16

S,,=16

MTDP: Recurrence

Computing the score for a point (i,j) by the
recurrence relation:

/

s., . + weight of the edge between (i-1, j) and

.i-1.’j
= max (i, j)
Si, j-1

\~ (I, J)

The running time isn x m fora n by m grid

Sl,j

+ weight of the edge between (i, j-1) and

(n = # of rows, m = # of columns)

Manhattan Is Not A Perfect Grid

ASN&;

0 0 + What about diagonals?

A ® \
:V :V VV

The score at point B is given by:

~
saq + weight of the edge (A4, B)

max <

Sg = of Sa, + Weight of the edge (A,, B)

sa3 T weight of the edge (A;, B)
N\

Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the
recurrence relation:

/

s, = max) s, + weight of vertex (y, x) where
of y € Predecessors(x)

-

Predecessors (x) — set of vertices that have edges
leading to x

The running time for a graph G(V, E)
(V is the set of all vertices and E is the set of all edges)
is O(E) since each edge is evaluated once

Traveling in the Grid

*The only hitch is that one must decide on the
order in which visit the vertices

By the time the vertex x is analyzed, the
values s, for all its predecessors y should be
computed — otherwise we are in trouble.

\We need to traverse the vertices in some
order

*Try to find such order for a directed cycle

DAG: Directed Acyclic Graph

Since Manhattan is not a perfect regular grid,
we represent it as a DAG

Longest Path in DAG Problem

Goal: Find a longest path between two
vertices in a weighted DAG

Input: A weighted DAG G with source and
sink vertices

Output: A longest path in G from source to
sink

Longest Path in DAG: Dynamic Programming

Suppose vertex v has indegree 3 and
predecessors {u,, U,, Us}

Longest path to v from source is:

[

en; + weight of edge from u, to v

max <
of

4, =

eu, + weight of edge from u, to v

L a3 + weight of edge from u; to v
In General:

s, = max, (sy + weight of edge from u to v)

Traversing the Manhattan Grid

3 different strategies: i ¥ R

o e e =

- a) Column by b m
column HiN

* b) Row by row i
- ¢) Along diagonals B

[
|/ rd

’

’
//////////
///////
////////////
o P

/////
/////
' 4 £l #

ALIGNMENT

Alignment: 2 row representation

Given 2 DNA sequences v and w:

v: ATCTGAT m=7
w: TGCATA nN=06

Alignment: 2*kmatrix(k>m, n)

letters of v A TI|-|G|T|T A|T

letters of w A|lT|C|G|T|-|A|-]|C

5 matches 2 insertions 2 deletions

Aligning DNA Sequences

V = ATCTGATG n=_§8 4 matches
W = TGCATAC m=7 1 mismatch

matc 2 insertions
//é\ I1\mismati:h 2

v [AM[—[0—MSAT |G
W _\W@ \%,A \V _\6/ _\(j

Longest Common Subsequence (I.CS) — Alignment
without Mismatches

Given two sequences
V=V, V,...V,and W =w,; W,...W,
The LCS of v and w is a sequence of positions in
vil < <L <...<ig<m
and a sequence of positions in
wil <j; <), <...<Jy<h

such that i, -th letter of v equals to j-letter of w and t
IS maximal

'LCS: Example

jcoords: 0 1 2 2 3 3 4 5 6 7 8
elementsofv | A | T Cl-ITIGIAITIC
elementsofw | - T|IGICIA T/ ~-|Al-IC

j coords: 0 01 2 3 45 5 6 6 7

(0,0)>(1,0)>(2,1)>(2,2)>(3,3)>(3,4)>(4,5)>(5,5)>(6,6)>(7,6)>(8,7)

positionsinv: 2<3<4<6<38

Matches shown in e :
positionsiINW: 1 <3<5<6<7

red
Every common subsequence is a path in 2-D

grid

T
G2
C:
Az
Ts
As
Cr

A T
1 2

C
3

T
4

G
5

A
6

T
7

L.CS Problem as Manhattan Tourist Problem

C
8

Ve
<

Y

Y

Y

Y

Y

Ve
<

<

\

Y

Y

Y

Y

Ve
<

|

|

Y

Y

Y

Y

Ve
<

|

|

\

Y

Y

Y

Ve
<

|

|

Y

Y

Ve
<

«

«

Ve
hl

Ve
hl

Ve
hl

Ve
hl

Hdit Graph for LLCS Problem

A T C T A T

<«

<«

» » » » » » »
Ll Ll Ll Ll Ll Ll Ll
T v R 4 v R 4 R 4 R 4)
Ll > Ll Ll Ll Ll
v v A R 4 v v R 4)
Ll Ll Ll Ll Ll Ll Ll
v v R 4 v R 4 R 4 v K 4

<«

P
<
Ve
<
\
Ve
<
Ve
<
Ve
<

<«

P
<
Ve
<
Ve
<
Ve
<
Ve
<
<
)l
)
<

<«

o r» 4 > O
Ve
Ve
Ve

dl
l
\/
Vo
l
\/
l
Vo
l
Vo
al
Vo
al
Vo
al

Hdit Graph for LLCS Problem

A T C T A T C
., , Everypathisa
common
T S ¥ subsequence.
v K A R R R R K Every diagonal
edge adds an
Cs v Y R iy K. Y K Y extra element to
common
As 1 o N " subsequence
Ts5 —t — — " LCS Problem:
Find a path with
Ac ¥ |~ maximum
co . 3 3 3 ! ! ! 4 humber of

diagonal edges

Computing LLCS

Letv, = prefixofvoflengthi: v,...v

and w; = prefix of wof length j: w, ... w,
The length of LCS(v;,w;) is computed by:

~
Si1,j

s, . max)

!
’ Si, j-

- Si_1,j_1 +1 if V|=W

Computing L.LCS (cont’d)

Every Path in the Grid Corresponds to an
Alignment

W A T C G
NN\
\4 0 1 2 3 4 012 2 34
0 V= AT-GT
A 1 1l
W= ATCG-
T 2 012 344
G 3 \I
T p Js

DISTANCE BETWEEN
STRINGS

Aligning Sequences without Insertions and
Deletions: Hamming Distance

Given two DNA sequences v and w :

v : ATATATAT
w: TATATATA

The Hamming distance: d, (v, w) = 8 is
large but the sequences are very similar

Aligning Sequences with Insertions and
Deletions

By shifting one sequence over one
position:

v : ATATATAT --

w: -TATATATA

The edit distance: d, (v, w) = 2.

Hamming distance neglects insertions and
deletions in DNA

Edit Distance

Levenshtein (1966) introduced edit distance
between two strings as the minimum number
of elementary operations (insertions, deletions,
and substitutions) to transform one string into

the other

d(v,w) = MIN number of elementary operations
to transformv - w

Edit Distance vs Hamming Distance

Hamming distance
always compares
ith letter of v with

i'th letter of w

MY

W = TATATATA

Hamming distance:
d(v, w)=8
Computing Hamming distance
Is a trivial task.

Edit Distance vs Hamming Distance

Hamming distance
always compares
ith letter of v with

i'th letter of w

MY

W = TATATATA

Hamming distance:
d(v, w)=8
Computing Hamming distance
IS a trivial task

Edit distance
may compare
i'th letter of v with

jth letter of w

V = - ATATATAT

NANNIN
W = TATATATA

Edit distance:
d(v, w)=2
Computing edit distance
IS a non-trivial task

Edit Distance vs Hamming Distance

Hamming distance Edit distance
always compares may compare
ith |letter of v with ith letter of v with
ith letter of w jth letter of w
V = ATATATAT vV =- I‘\T‘l‘\T‘I‘\‘TI‘\T
IR
W = TATATATA W = TATATATA
Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2

(one insertion and one deletion)

How to find what | goes with what i ??7

Edit Distance: Example

TGCATAT = ATCCGAT in 5 steps

TGCATA - (delete last)
TGCAT - (delete last)
TGCAT - (insert A at front)
ATGCAT - (substitute C for 39 G)

ATCCAT - (insert G before last A)
ATCCGAT (Done)

Edit Distance: Example

TGCATAT = ATCCGAT in 5 steps

TGCATA - (delete last)
TGCAT - (delete last)
TGCAT - (insert A at front)
ATGCAT - (substitute C for 39 G)

ATCCAT - (insert G before last A)
ATCCGAT (Done)
What is the edit distance? 5?

Edit Distance: Example (cont’q)
TGCATAT - ATCCGAT In 4 steps

TGCATAT - (insert A at front)
ATGCATA - (delete 6t)
ATGCATA - (substitute G for 5" A)

ATGCGTA - (substitute C for 3 G)
ATCCGAT (Done)

Edit Distance: Example (cont’d)
TGCATAT - ATCCGAT In 4 steps

TGCATAT - (insert A at front)
ATGCATA - (delete 6t)
ATGCATA - (substitute G for 5th A)
ATGCGTA - (substitute C for 3 G)
ATCCGAT (Done)

Can it be done in 3 steps???

The Alignment Grid

o1 2 2 3 4 5 6 7T 7

o1 2 3 4 5 5 6 6 T

* Every alignment . .
path is from T
source to sink
T ? é;_

-
— -,
—~ -

Alighment as a Path in the Edit Graph

"AEUT OB T MG
v 0 19 2 3 4 8 6 1
A@) 01223456177
7 AT_GTTAT_
. T ATCGT_A_C
. S 0123455667
%4 | - Corresponding path -
; ‘ 0,0 , (1,1 , 2,2, 2,3,
1\ 3,4, (4,5, (5,5, (6,6),
W@ i (7,6), (7,7
: 1=

Alignments 1n Edit Graph (coned)

" |and - represent
@Aﬂ?z@ @ﬁﬁ@@y indels invand w

with score 0.

8

>

\.represent matches
~ with score 1.

* The score of the
alignment path is 5.

LS [ES) RS =
/

&a
<

[SD)

5= = =] G =] 7= <

=0

‘ Alignment as a Path in the Edit Graph

W L
oAnlizCa G4 T5A6C7 Every path in the edit
0 graph corresponds to an
alionment:
— ~ 1

~ (%Y [NCYY
/

wn
4

— === GO = o

~3 SN\
<
|

Alighment as a Path in the Edit Graph

w
v @Aﬂﬁz @3 @4 WSA@@W Old Alignment
0 0122345677
A S v= AT_GTTAT_
T’ . w= ATCGT_A_C
Gh L 1 0123455667
3
U g l | New Alignment
T, 0122345677
A < v= AT_GTTAT_
6 | w= ATCG_TA_C
W 7 0123445667

Alighment as a Path in the Edit Graph

W@Aﬁ]WZ @3 @él WSA@@W

@ 012234567
v= AT _GTTAT

Z w= ATCGT_A_

8 NG 012345566

| (0,0), (1,1), (2,2),
(3,4), (4,3), (5,5), (6,6),
(7,6),

&1
<

[SD)

5= =] G =] T <

=0

Alignment: Dynamic Programming

S; ;= I si_1,j_1+1 if v, = w;
max si-1,j l
U S

Dynamic Programming Example

" AT o6 T AC L
0 9 2 4§ 8 6 1 Initialize 15t row and
1st column to be all

Zeroes.

3

S

Or, to be more
precise, initialize 0t"
row and 0t" column
to be all zeroes.

N C O O

&

[SD)

5= =] G =] T <

=0

Dynamic Programming Example

W©Aﬂﬁz @8 @él WBA@@W

S

g

v
W 1 V1 I vl \ﬂ N

9 T Sii= [Si1,j1€=value from NW +1, if v, = W;\
@ L max | Sia,; € value from North (top) T
W 3 l4 s, € value from West (left)
T 4 Tﬁ]
A S 14

=] &

—
=

Alignment: Backtracking

Arrows N show where the score
originated from.

I if from the top

—— if from the left

\ if v,=w;

J

5= =] G =] T <

Backtracking Example

W©Aﬁ]ﬁz@

© U A © Find amatch in row and column
g

3 5§ 6 T

0

PR PR P P —| 1=2,j=2,5is a match (T).
d \41 1 4| 4 ﬂ\ﬂ d
4 I4 \2 o 2\2 g J52,1=4,5,7 is a match (T).
Y Ta| T

2 - - —
) Tﬂ\z Since v; = W; S;; =S +1
S Tﬂ\z S22 = [S1:,=1] +1
—) — 1- 1

6 \ﬁ] T2 32,5 ~ 31,4 _ 15 N 1

N S4,2 = LS3,1 = 11 +
il Tﬂ 2 55’2 - _54’1 - 1_ + 1

Sy > =1Sg7 =11 +1

Backtracking Example

"B T 6B T ACGC

v 0 49 2 3% 4 5 6 7

A’ — o

T R ENE Continuing with the

G 2 4 \2 T z\g 44 dynamic

W@ la] 1, T2\3 444 programming

T@l talNe| 1. T%@; 44 algorithm gives this
5| of 1ol | 12 T4l T4 1yl result.

A@ \ﬂTZTZT Td\g‘—@

W? Tﬂ\z Tsz\éng T@

Alignment: Dynamic Programming

S; ;= I si_1,j_1+1 if v, = w;
max si-1,j l
U S

Alignment: Dynamic Programming

max si-1,j+0 l
I S; 10

This recurrence corresponds to the Manhattan
Tourist problem (three incoming edges into a
vertex) with all horizontal and vertical edges
weighted by zero.

LCS Algorithm

LCS(v,w)
for 7 € 1 to n
S;io€ 0
for j € 1 tom
Sp,; € 0
for 7 € 1 to n
for 7 € 1 tom
(S

7-1,7
S;; € max! S; . ;
\ 57'—1,]'
f L€ T £
6 — K6
bi,j é { 1 \ 1
\

return (s, ,, b)

Now What?

LCS(v,w) created the w@ Aﬂ W@ @@ @4 W@ A@ @7

alignment grid A@
I Na| T e e]
Now we need a way 2| N P
to read the best @3 : T2 T%\ —r T
alignmentofvandw 7 Tﬂ\ﬂ TR :
1] 2 a4l 4
[IRENRRNDD
Follow the arrows A L T N
backwards from sink T@ Tﬂ\g T@ IR Tﬁ ﬁ
i 2 4 13 5 5

Printing L.CS: Backtracking

PrintLCS(b,v, /)
if i =0o0rj=0
return
if b, =""\"
PrintLCS(b,v,/-17,/-1)
print v;
else
if b, =1 *
PrintLCS(b,v,/-17,))
else
PrintLCS(b,v,//-7)

LCS Runtime

It takes O(nm) time to fill in the nxm dynamic
programming matrix.

QUIZ 1

DNA mapping

A X={01,23,3,55,7,8,8,10,12,13,13,15,16}

Use the partial digest algorithm to find X

