
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Outline

 DNA Sequence Comparison

 Change Problem

 Manhattan Tourist Problem

 Longest Paths in Graphs

 Sequence Alignment

 Edit Distance

 Longest Common Subsequence Problem

 Dot Matrices

DNA sequence comparison

 Gene similarities between two genes with
known and unknown function alert biologists
to some possibilities

 Computing a similarity score between two
genes tells how likely it is that they have
similar functions

 Dynamic programming is a technique for
revealing similarities between genes

 The Change Problem is a good problem to
introduce the idea of dynamic programming

The Change Problem

Goal: Convert some amount of money M

into given denominations, using the

fewest possible number of coins

Input: An amount of money M, and an array of

d denominations c = (c1, c2, …, cd), in a

decreasing order of value (c1 > c2 > … > cd)
Output: A list of d integers i1, i2, …, id such

that
c1i1 + c2i2 + … + cdid = M

and i1 + i2 + … + id is minimal

Change Problem: Example

Given the denominations 1, 3, and 5, what

is the minimum number of coins needed to

make change for a given value?

1 2 3 4 5 6 7 8 9 10

1 1 1

Value

Min # of coins

Only one coin is needed to make change

for the values 1, 3, and 5

Change Problem: Example (cont’d)

Given the denominations 1, 3, and 5, what

is the minimum number of coins needed to

make change for a given value?

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 2 2

Value

Min # of coins

However, two coins are needed to make

change for the values 2, 4, 6, 8, and 10.

Change Problem: Example (cont’d)

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 3 2 3 2

Value

Min # of coins

Lastly, three coins are needed to make

change for the values 7 and 9

Given the denominations 1, 3, and 5, what

is the minimum number of coins needed to

make change for a given value?

Change Problem: Recurrence

This example is expressed by the following

recurrence relation:

minNumCoins(M) =

minNumCoins(M-1) + 1

minNumCoins(M-3) + 1

minNumCoins(M-5) + 1

min of

Change Problem: Recurrence (cont’d)

Given the denominations c: c1, c2, …, cd,

the recurrence relation is:

minNumCoins(M) =

minNumCoins(M-c1) + 1

minNumCoins(M-c2) + 1

…

minNumCoins(M-cd) + 1

min of

Change Problem: A Recursive Algorithm

1. RecursiveChange(M,c,d)

2. if M = 0

3. return 0

4. bestNumCoins  infinity

5. for i  1 to d

6. if M ≥ ci

7. numCoins  RecursiveChange(M – ci , c, d)

8. if numCoins + 1 < bestNumCoins

9. bestNumCoins  numCoins + 1

10. return bestNumCoins

RecursiveChange Is Not Efficient

 It recalculates the optimal coin combination

for a given amount of money repeatedly

 i.e., M = 77, c = (1,3,7):

 Optimal coin combo for 70 cents is

computed 9 times!

The RecursiveChange Tree

74

77

76 70

75 73 69 73 71 67 69 67 63

74 72 68

72 70 66

68 66 62

72 70 66

70 68 64

66 64 60

68 66 62

66 64 60

62 60 56

.
70 70 70 70 70

We Can Do Better

 We’re re-computing values in our algorithm more
than once

 Save results of each computation for 0 to M

 This way, we can do a reference call to find an
already computed value, instead of re-computing
each time

 Running time M*d, where M is the value of money

and d is the number of denominations

The Change Problem: Dynamic Programming

1. DPChange(M,c,d)

2. bestNumCoins0  0

3. for m  1 to M

4. bestNumCoinsm  infinity

5. for i  1 to d

6. if m ≥ ci

7. if bestNumCoinsm – ci
+ 1 < bestNumCoinsm

8. bestNumCoinsm  bestNumCoinsm – ci
+ 1

9. return bestNumCoinsM

DPChange: Example

0

0 1

0 1 2

0 1 2 3

0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

0 1

0

0 1 2

0 1 2 1

0 1 2 1 2

0 1 2 1 2 3

0 1 2 1 2 3 2

0 1 2 1 2 3 2 1

0 1 2 1 2 3 2 1 2

0 1 2 1 2 3 2 1 2 3

c = (1,3,7)

M = 9

Manhattan Tourist Problem (MTP)

Imagine seeking a

path (from source

to sink) to travel

(only eastward

and southward)

with the most

number of

attractions (*) in

the Manhattan

grid

Sink
*

*

*

*

*

* *

* *

*

*

Source

*

Manhattan Tourist Problem (MTP)

Imagine seeking a

path (from source

to sink) to travel

(only eastward

and southward)

with the most

number of

attractions (*) in

the Manhattan

grid

Sink
*

*

*

*

*

* *

* *

*

*

Source

*

Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted

grid.

Input: A weighted grid G with two distinct

vertices, one labeled “source” and the

other labeled “sink”

Output: A longest path in G from

“source” to “sink”

MTP: An Example

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i
c

o
o

rd
in

a
te

13

source

sink

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4
19

9 5

15

23

0

20

3

4

MTP: Greedy Algorithm Is Not Optimal

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2
promising

start, but

leads to bad

choices!

source

sink
18

22

MTP: Simple Recursive Program

MT(n,m)

 if n=0 or m=0

 return MT(n,m)

 x  MT(n-1,m)+

 length of the edge from (n- 1,m) to (n,m)

 y  MT(n,m-1)+

 length of the edge from (n,m-1) to (n,m)

 return max{x,y}

MTP: Simple Recursive Program

MT(n,m)

 x  MT(n-1,m)+

 length of the edge from (n- 1,m) to (n,m)

 y  MT(n,m-1)+

 length of the edge from (n,m-1) to (n,m)

 return min{x,y}

What’s wrong with this approach?

1

5

0 1

0

1

i

source

1

5

S1,0 = 5

S0,1 = 1

• Calculate optimal path score for each vertex in the graph

• Each vertex’s score is the maximum of the prior vertices

score plus the weight of the respective edge in between

MTP: Dynamic Programming

j

MTP: Dynamic Programming (cont’d)

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 3
3

-5

j

MTP: Dynamic Programming (cont’d)

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5

8

10 3

5

-5

9

13

1 -5

S3,0 = 8

S2,1 = 9

S1,2 = 13

S3,0 = 8

j

MTP: Dynamic Programming (cont’d)

greedy alg.

fails!

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1 = 9

S2,2 = 12

S1,3 = 8

j

MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15

MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3 = 16

(showing all back-traces)

Done!

MTP: Recurrence

Computing the score for a point (i,j) by the

recurrence relation:

si, j =
max

si-1, j + weight of the edge between (i-1, j) and

(i, j)

si, j-1 + weight of the edge between (i, j-1) and

(i, j)

The running time is n x m for a n by m grid

(n = # of rows, m = # of columns)

Manhattan Is Not A Perfect Grid

What about diagonals?

• The score at point B is given by:

sB =
max

of

sA1 + weight of the edge (A1, B)

sA2 + weight of the edge (A2, B)

sA3 + weight of the edge (A3, B)

B

A3

A1

A2

Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the

recurrence relation:

sx =
max

of

sy + weight of vertex (y, x) where

 y є Predecessors(x)

• Predecessors (x) – set of vertices that have edges

leading to x

•The running time for a graph G(V, E)

(V is the set of all vertices and E is the set of all edges)

is O(E) since each edge is evaluated once

Traveling in the Grid

•The only hitch is that one must decide on the

order in which visit the vertices

•By the time the vertex x is analyzed, the

values sy for all its predecessors y should be

computed – otherwise we are in trouble.

•We need to traverse the vertices in some

order

•Try to find such order for a directed cycle

DAG: Directed Acyclic Graph

• Since Manhattan is not a perfect regular grid,

we represent it as a DAG

Longest Path in DAG Problem

• Goal: Find a longest path between two

vertices in a weighted DAG

• Input: A weighted DAG G with source and

sink vertices

• Output: A longest path in G from source to

sink

Longest Path in DAG: Dynamic Programming

• Suppose vertex v has indegree 3 and

predecessors {u1, u2, u3}

• Longest path to v from source is:

In General:

 sv = maxu (su + weight of edge from u to v)

sv = max

of

su1 + weight of edge from u1 to v

su2 + weight of edge from u2 to v

su3 + weight of edge from u3 to v

Traversing the Manhattan Grid

• 3 different strategies:

• a) Column by
column

• b) Row by row

• c) Along diagonals

a) b)

c)

ALIGNMENT

Alignment: 2 row representation

Alignment : 2 * k matrix (k > m, n)

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w

T

T

A T C T G A T
T G C A T A

v :
w :

m = 7
n = 6

5 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:

Aligning DNA Sequences

V = ATCTGATG

W = TGCATAC

n = 8

m = 7

A T C T G A T G

T G C A T A C

V

W

match

deletion
insertion

mismatch

indels

4
1
2
2

 matches
 mismatch
 insertions

 deletions

Longest Common Subsequence (LCS) – Alignment

without Mismatches

• Given two sequences

 v = v1 v2…vm and w = w1 w2…wn

• The LCS of v and w is a sequence of positions in

 v: 1 < i1 < i2 < … < it < m

and a sequence of positions in

 w: 1 < j1 < j2 < … < jt < n

such that it -th letter of v equals to jt-letter of w and t

is maximal

LCS: Example

A T -- C T G A T C

-- T G C T -- A -- C

elements of v

elements of w

--

A

1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in

red

positions in v:

positions in w:

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D

grid

0

0

(0,0) (1,0) (2,1) (2,2) (3,3) (3,4) (4,5) (5,5) (6,6) (7,6) (8,7)

LCS Problem as Manhattan Tourist Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a

common

subsequence.

Every diagonal

edge adds an

extra element to

common

subsequence

LCS Problem:

Find a path with

maximum

number of

diagonal edges

Computing LCS

Let vi = prefix of v of length i: v1 … vi

and wj = prefix of w of length j: w1 … wj

The length of LCS(vi,wj) is computed by:

si, j

=

max
si-1, j

si, j-1

si-1, j-1 + 1 if vi = wj

Computing LCS (cont’d)

si,j = MAX

si-1,j + 0

si,j -1 + 0
si-1,j -1 + 1, if vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

Every Path in the Grid Corresponds to an

Alignment

0 1 2 3 4

0

1

2

3

4

W A T C G

A

T

G

T

V

 0 1 2 2 3 4

V = A T - G T

 | | |

W= A T C G –

 0 1 2 3 4 4

DISTANCE BETWEEN

STRINGS

Aligning Sequences without Insertions and

Deletions: Hamming Distance

Given two DNA sequences v and w :

v :

• The Hamming distance: dH(v, w) = 8 is

large but the sequences are very similar

A T A T A T A T

A T A T A T A T w :

Aligning Sequences with Insertions and

Deletions

v : A T A T A T A T

A T A T A T A T w : --

--

By shifting one sequence over one

position:

• The edit distance: dH(v, w) = 2.

• Hamming distance neglects insertions and

deletions in DNA

Edit Distance

Levenshtein (1966) introduced edit distance

between two strings as the minimum number

of elementary operations (insertions, deletions,

and substitutions) to transform one string into

the other

d(v,w) = MIN number of elementary operations

to transform v  w

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance

always compares

 i-th letter of v with

 i-th letter of w

Hamming distance:

 d(v, w)=8
Computing Hamming distance

 is a trivial task.

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance:

 d(v, w)=8 d(v, w)=2
Computing Hamming distance Computing edit distance

 is a trivial task is a non-trivial task

W = TATATATA

Just one shift

Make it all line up

V = - ATATATAT

Hamming distance

always compares

 i-th letter of v with

 i-th letter of w

Edit distance

may compare

 i-th letter of v with

 j-th letter of w

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance:

 d(v, w)=8 d(v, w)=2

 (one insertion and one deletion)

How to find what j goes with what i ???

W = TATATATA

V = - ATATATAT

Hamming distance

always compares

 i-th letter of v with

 i-th letter of w

Edit distance

may compare

 i-th letter of v with

 j-th letter of w

Edit Distance: Example

TGCATAT  ATCCGAT in 5 steps

TGCATAT  (delete last T)

TGCATA  (delete last A)

TGCAT  (insert A at front)

ATGCAT  (substitute C for 3rd G)

ATCCAT  (insert G before last A)

ATCCGAT (Done)

Edit Distance: Example

TGCATAT  ATCCGAT in 5 steps

TGCATAT  (delete last T)

TGCATA  (delete last A)

TGCAT  (insert A at front)

ATGCAT  (substitute C for 3rd G)

ATCCAT  (insert G before last A)

ATCCGAT (Done)

What is the edit distance? 5?

Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT  (insert A at front)

ATGCATAT  (delete 6th T)

ATGCATA  (substitute G for 5th A)

ATGCGTA  (substitute C for 3rd G)

ATCCGAT (Done)

Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT  (insert A at front)

ATGCATAT  (delete 6th T)

ATGCATA  (substitute G for 5th A)

ATGCGTA  (substitute C for 3rd G)

ATCCGAT (Done)

 Can it be done in 3 steps???

The Alignment Grid

• Every alignment

path is from

source to sink

Alignment as a Path in the Edit Graph

0 1 2 2 3 4 5 6 7 70 1 2 2 3 4 5 6 7 7
 A T _ G T T A T _A T _ G T T A T _
 A T C G T _ A _ CA T C G T _ A _ C
0 1 2 3 4 5 5 6 6 7 0 1 2 3 4 5 5 6 6 7

(0,0) , (1,1) , (2,2), (2,3), (0,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6), (3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)(7,6), (7,7)

- Corresponding path -

Alignments in Edit Graph (cont’d)

 and represent

indels in v and w

with score 0.

 represent matches

with score 1.

• The score of the

alignment path is 5.

Alignment as a Path in the Edit Graph

Every path in the edit

graph corresponds to an

alignment:

Alignment as a Path in the Edit Graph

Old AlignmentOld Alignment
 01223012234545677677
v= AT_Gv= AT_GTTTTAT_AT_
w= ATCGw= ATCGT_T_A_CA_C
 01234012345555667667

 New AlignmentNew Alignment
 01223012234545677677
v= AT_Gv= AT_GTTTTAT_AT_
w= ATCGw= ATCG_T_TA_CA_C
 01234012344545667667

Alignment as a Path in the Edit Graph

 01201222343455667777
v= ATv= AT__GTGTTTAATT__
w= ATw= ATCCGTGT__AA__CC
 01201233454555666677

(0,0) , (1,1) , (2,2), (0,0) , (1,1) , (2,2), (2,3),(2,3),

(3,4), (4,5), (3,4), (4,5), (5,5),(5,5), (6,6), (6,6),

(7,6),(7,6), (7,7)(7,7)

Alignment: Dynamic Programming

si,j = si-1, j-1+1 if vi = wj

 max si-1, j

 si, j-1

Dynamic Programming Example

Initialize 1st row and

1st column to be all

zeroes.

Or, to be more

precise, initialize 0th

row and 0th column

to be all zeroes.

Dynamic Programming Example

Si,j = Si-1, j-1

 max Si-1, j

 Si, j-1

value from NW +1, if vi = wj

 value from North (top)

 value from West (left)

Alignment: Backtracking

Arrows show where the score

originated from.

 if from the top

 if from the left

 if vi = wj

Backtracking Example

Find a match in row and column

2.

i=2, j=2,5 is a match (T).

j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1

Backtracking Example

Continuing with the

dynamic

programming

algorithm gives this

result.

Alignment: Dynamic Programming

si,j = si-1, j-1+1 if vi = wj

 max si-1, j

 si, j-1

Alignment: Dynamic Programming

si,j = si-1, j-1+1 if vi = wj

 max si-1, j+0

 si, j-1+0

This recurrence corresponds to the Manhattan

Tourist problem (three incoming edges into a

vertex) with all horizontal and vertical edges

weighted by zero.

LCS Algorithm

1. LCS(v,w)

2. for i  1 to n

3. si,0  0

4. for j  1 to m

5. s0,j  0

6. for i  1 to n

7. for j  1 to m

8. si-1,j

9. si,j  max si,j-1

10. si-1,j-1 + 1, if vi = wj

11. “ “ if si,j = si-1,j
 bi,j  “ “ if si,j = si,j-1
 “ “ if si,j = si-1,j-1 + 1

 return (sn,m, b)

Now What?

 LCS(v,w) created the
alignment grid

 Now we need a way
to read the best
alignment of v and w

 Follow the arrows
backwards from sink

Printing LCS: Backtracking

1. PrintLCS(b,v,i,j)

2. if i = 0 or j = 0

3. return

4. if bi,j = “ “

5. PrintLCS(b,v,i-1,j-1)

6. print vi

7. else

8. if bi,j = “ “

9. PrintLCS(b,v,i-1,j)

10. else

11. PrintLCS(b,v,i,j-1)

LCS Runtime

 It takes O(nm) time to fill in the nxm dynamic

programming matrix.

QUIZ 1

DNA mapping

∆ X = {0,1,2,3,3,5,5,7,8,8,10,12,13,13,15,16}

Use the partial digest algorithm to find X

