
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

Quiz 1: DNA mapping

∆ X = {0,1,2,3,3,5,5,7,8,8,10,12,13,13,15,16}
X = {0, 16} check 15 and 16-15=1 ∆(15, X) = ∆(1, X) = {15, 1)

 pick either 15 or 1; remove 1 and 15 from ∆ X

X = {0, 15, 16} L= {2,3,3,5,5,7,8,8,10,12,13,13}

 check 13 and 3; ∆(13, X)={13,2,3} subset of L

X = {0, 13, 15, 16} L = {3,5,5,7,8,8,10,12,13}

 check 13 and 3; ∆(13, X)={13,0,2,3} not subset of L

 ∆(3, X)={3,10,12,13} subset of L

X = {0, 3, 13, 15, 16} L = {5,5,7,8,8}

 check 8; ∆(8, X)={8,5,5,7,8} subset of L

X = {0, 3, 8, 13, 15, 16} L = {} done

Alternative: X = {0, 1, 3, 8, 13, 16}

MORE ON PAIRWISE

ALIGNMENT

From LCS to Alignment: Change up the Scoring

 The Longest Common Subsequence (LCS)
problem—the simplest form of sequence alignment
– allows only insertions and deletions (no
mismatches).

 In the LCS Problem, we scored 1 for matches and 0
for indels

 Consider penalizing indels and mismatches with
negative scores

 Simplest scoring schema:

 +1 : match premium

 -μ : mismatch penalty

 -σ : indel penalty

Simple Scoring

 When mismatches are penalized by –μ,

indels are penalized by –σ,

 and matches are rewarded with +1,

 the resulting score is:

 #matches – μ(#mismatches) – σ (#indels)

The Global Alignment Problem

Find the best alignment between two strings under a given scoring
schema

Input : Strings v and w and a scoring schema

Output : Alignment of maximum score

↑→ = -б

 = 1 if match

 = -µ if mismatch

 si-1,j-1 +1 if vi = wj

si,j = max s i-1,j-1 -µ if vi ≠ wj

 s i-1,j - σ

 s i,j-1 - σ

m : mismatch

penalty

σ : indel penalty

 Needleman-Wunsch algorithm

Percent Sequence Identity

 The extent to which two nucleotide or amino acid

sequences are invariant

A C C T G A G – A G
A C G T G – G C A G

Alignment length = 10

Matches = 7

70% identical

mismatch
indel

Similarity vs. identity

 Common usage:

 Similarity for amino acid alignments (protein-

protein)

 Identity for nucleotide alignments (DNA-DNA or

RNA-RNA)

Scoring Matrices

To generalize scoring, consider a (4+1) x(4+1)
scoring matrix δ.

In the case of an amino acid sequence alignment, the
scoring matrix would be a (20+1)x(20+1) size. The
addition of 1 is to include the score for comparison
of a gap character “-”.

This will simplify the algorithm as follows:

 si-1,j-1 + δ (vi, wj)

si,j = max s i-1,j + δ (vi, -)

 s i,j-1 + δ (-, wj)

Making a Scoring Matrix

 Scoring matrices are created based on

biological evidence.

 Alignments can be thought of as two

sequences that differ due to mutations.

 Some of these mutations have little effect on

the protein’s function, therefore some

penalties, δ(vi , wj), will be less harsh than

others.

Scoring Matrix: Example

A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although

R and K are different

amino acids, they

have a positive score.

• Why? They are both

positively charged

amino acids will not

greatly change

function of protein.

Conservation

 Amino acid changes that tend to preserve the
physico-chemical properties of the original
residue

 Polar to polar

 aspartate glutamate

 Nonpolar to nonpolar

 alanine valine

 Similarly behaving residues

 leucine to isoleucine

Scoring matrices

 Amino acid substitution matrices

 PAM

 BLOSUM

 DNA substitution matrices

 DNA is less conserved than protein
sequences

 Less effective to compare coding regions at
nucleotide level

PAM

 Point Accepted Mutation (Dayhoff et al.)

 PAM250 is a widely used scoring matrix:

 Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys ...

 A R N D C Q E G H I L K ...

Ala A 13 6 9 9 5 8 9 12 6 8 6 7 ...

Arg R 3 17 4 3 2 5 3 2 6 3 2 9

Asn N 4 4 6 7 2 5 6 4 6 3 2 5

Asp D 5 4 8 11 1 7 10 5 6 3 2 5

Cys C 2 1 1 1 52 1 1 2 2 2 1 1

Gln Q 3 5 5 6 1 10 7 3 7 2 3 5

...

Trp W 0 2 0 0 0 0 0 0 1 0 1 0

Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1

Val V 7 4 4 4 4 4 4 4 5 4 15 10

BLOSUM

 Blocks Substitution Matrix

 Scores derived from observations of the

frequencies of substitutions in blocks of

local alignments in related proteins

 Matrix name indicates evolutionary distance

 BLOSUM62 was created using sequences

sharing no more than 62% identity

The Blosum50 Scoring Matrix

Scoring Indels: Naive Approach

 A fixed penalty σ is given to every indel:

 -σ for 1 indel,

 -2σ for 2 consecutive indels

 -3σ for 3 consecutive indels, etc.

Can be too severe penalty for a series of

100 consecutive indels

Affine Gap Penalties

 In nature, a series of k indels often come as a

single event rather than a series of k single

nucleotide events:

Normal scoring

would give the same

score for both

alignments

This is more

likely.

This is less

likely.

Accounting for Gaps

 Gaps- contiguous sequence of spaces in one of the
rows

 Score for a gap of length x is:

 -(ρ + σx)

 where ρ >0 is the penalty for introducing a gap:

 gap opening penalty

 ρ will be large relative to σ:

 gap extension penalty

 because you do not want to add too much of a
penalty for extending the gap.

Affine Gap Penalties

 Gap penalties:

 -ρ-σ when there is 1 indel

 -ρ-2σ when there are 2 indels

 -ρ-3σ when there are 3 indels, etc.

 -ρ- x·σ (-gap opening - x gap extensions)

 Somehow reduced penalties (as compared to

naïve scoring) are given to runs of horizontal

and vertical edges

Affine Gap Penalties and Edit Graph

To reflect affine gap

penalties we have to

add “long” horizontal

and vertical edges to

the edit graph. Each

such edge of length x

should have weight

 - - x *

Adding “Affine Penalty” Edges to the Edit Graph

Adding them to the graph

increases the running time

of the alignment algorithm

by a factor of n (where n is

the number of vertices)

So the complexity increases

from O(n2) to O(n3)

We can still achieve O(n2)

with dynamic programming

Affine Gap Penalty Recurrences

si,j = s i-1,j - σ

 max s i-1,j –(ρ+σ)

si,j = s i,j-1 - σ

 max s i,j-1 –(ρ+σ)

si,j = si-1,j-1 + δ (vi, wj)

 max s i,j

 s i,j

Continue Gap in w (deletion)

Start Gap in w (deletion): from

middle

Continue Gap in v (insertion)

Start Gap in v (insertion):from

middle

Match or Mismatch

End deletion: from top

End insertion: from bottom

Affine Gap Penalty Recurrences (cont)

S ….. i Type 1: G(i,j) is the max value of any alignment

T ….. j where si and tj match (or mismatch)

S ….. i ------ Type 2: E(i,j) is the max value of any alignment

T ………… j where tj matches a space

S ………... i Type 3: F(i,j) is the max value of any alignment

T ….. j ------ where si matches a space

Affine Gap Penalty Recurrences (cont)

S ….. i G(i,j)

T ….. j

S ….. i ------ E(i,j)

T ………… j

S ………... i F(i,j)

T ….. j ------

WeWgjiE

WeWgjiG

WejiF

jiF

WeWgjiF

WeWgjiG

WejiE

jiE

tsscorejiVjiG

jiFjiEjiGjiV

jWeWgjEjV

iWeWgiFiV

ji

),1(

,),1(

,),1(

max),(

)1,(

,)1,(

,)1,(

max),(

),()1,1(),(

)},(),,(),,(max{),(

),0(),0(

)0,()0,(

Wg: gap opening penalty

We: gap extension penalty

LOCAL ALIGNMENT

Local vs. Global Alignment

 The Global Alignment Problem tries to find

the longest path between vertices (0,0) and

(n,m) in the edit graph.

 The Local Alignment Problem tries to find the

longest path among paths between arbitrary

vertices (i,j) and (i’, j’) in the edit graph.

Local vs. Global Alignment

 The Global Alignment Problem tries to find the
longest path between vertices (0,0) and (n,m) in the
edit graph.

 The Local Alignment Problem tries to find the
longest path among paths between arbitrary
vertices (i,j) and (i’, j’) in the edit graph.

 In the edit graph with negatively-scored edges,
Local Alignmet may score higher than Global
Alignment

Local vs. Global Alignment (cont’d)

• Global Alignment

• Local Alignment—better alignment to find

conserved segment

 --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
 | || | || | | | ||| || | | | | |||| |
 AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

 tccCAGTTATGTCAGgggacacgagcatgcagagac

 ||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”

Global Alignment

to get Local

Local Alignments: Why?

 Two genes in different species may be similar
over short conserved regions and dissimilar
over remaining regions.

 Example:

 Homeobox genes have a short region
called the homeodomain that is highly
conserved between species.

 A global alignment would not find the
homeodomain because it would try to align
the entire sequence

The Local Alignment Problem

 Goal: Find the best local alignment between

two strings

 Input : Strings v, w and scoring matrix δ

 Output : Alignment of substrings of v and w

whose alignment score is maximum among

all possible alignment of all possible

substrings

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”

Global Alignment

to get Local

Local Alignment: Example

Local Alignment: Example

Local Alignment: Example

Local Alignment: Example

Local Alignment: Example

Local Alignment: Running Time
• Long run time O(n4):

 - In the grid of size n x n
there are ~n2 vertices (i,j)
that may serve as a
source.

 - For each such vertex
computing alignments
from (i,j) to (i’,j’) takes
O(n2) time.

• This can be remedied by
giving free rides

Local Alignment: Free Rides

Vertex (0,0)

The dashed edges represent the free rides from

(0,0) to every other node.

The Local Alignment Recurrence

• The largest value of si,j over the whole edit

graph is the score of the best local alignment.

• The recurrence:

 0

si,j = max si-1,j-1 + δ (vi, wj)
 s i-1,j + δ (vi, -)
 s i,j-1 + δ (-, wj)

There is only this

change from the

original recurrence of

a Global Alignment

Smith-Waterman Algorithm

The Local Alignment Recurrence

• The largest value of si,j over the whole edit

graph is the score of the best local alignment.

• The recurrence:

 0

si,j = max si-1,j-1 + δ (vi, wj)
 s i-1,j + δ (vi, -)
 s i,j-1 + δ (-, wj)

there is only this change

from the original recurrence

of a Global Alignment -

since there is only one “free

ride” edge entering into

every vertex

Smith-Waterman Algorithm

Smith-Waterman: Traceback

 In the traceback, start with the cell that has

the highest score and work back until a cell

with a score of 0 is reached

