
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

APPROXIMATE STRING

MATCHING: BANDED

ALIGNMENT

Limiting indels

 We know how to calculate global and local

alignments in O(mn) time

 What if the problem definition limits the indels

to w, where w<<n and w<<m?

 Can we improve run time?

Limiting indels

A C C A C A C A
0

A 1

C 2

A 1

C 0

C 1

A 2

T 1

A 2

Example: Limit indels to

w=2

Banded global alignment

 Example

 w=2

 What’s the

running time?

A C C A C A C A

0 -2 -4 -6

A -2 1 -1 -3 -5

C -4 -1 2 0 -2 -4

A -6 -3 0 1 1 -1 -3

C -5 -2 1 0 2 0 -2

C -4 -1 0 1 1 1 -1

A -3 0 -1 2 0 2

T -2 -1 0 1 0

A -1 0 -1 2

DP IN LINEAR SPACE &

DIVIDE AND CONQUER

ALGORITHMS

Divide and Conquer Algorithms

 Divide problem into sub-problems

 Conquer by solving sub-problems

recursively. If the sub-problems are small

enough, solve them in brute force fashion

 Combine the solutions of sub-problems

into a solution of the original problem (tricky

part)

Sorting Problem

 Given: an unsorted array

 Goal: sort it

5 2 4 7 1 3 2 6

1 2 2 3 4 5 6 7

Mergesort: Divide Step

Step 1 – Divide

 5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

log(n) divisions to split an array of size n into single elements

Mergesort: Conquer Step

Step 2 – Conquer

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

O(n)

O(n)

O(n)

O(n)

O(n logn) logn iterations, each iteration takes O(n) time. Total Time:

Mergesort: Combine Step

Step 3 – Combine

• 2 arrays of size 1 can be easily merged to
form a sorted array of size 2

• 2 sorted arrays of size n and m can be
merged in O(n+m) time to form a sorted
array of size n+m

5 2 2 5

Mergesort: Combine Step

Combining 2 arrays of size 4

2 4 5 7

1 2 3 6
1

2 4 5 7

2 3 6
1 2

4 5 7

2 3 6
1 2 2

4 5 7

3 6
1 2 2 3

4 5 7

6
1 2 2 3 4

etc.…
1 2 2 3 4 5 6 7

Merge Algorithm

1. Merge(a,b)

2. n1  size of array a

3. n2  size of array b

4. an1+1  

5. an2+1  

6. i  1

7. j  1

8. for k  1 to n1 + n2
9. if ai < bj

10. ck  ai

11. i  i +1
12. else

13. ck  bj

14. j j+1
15. return c

Mergesort: Example

20 4 7 6 1 3 9 5

20 4 7 6 1 3 9 5

20 4 7 6 1 3 9 5

20 4 7 6 1 3 9 5

4 20 6 7 1 3 5 9

4 6 7 20 1 3 5 9

1 3 4 5 6 7 9 20

Divide

Conquer

MergeSort Algorithm

1. MergeSort(c)

2. n  size of array c
3. if n = 1

4. return c

5. left  list of first n/2 elements of c

6. right  list of last n-n/2 elements of c

7. sortedLeft  MergeSort(left)

8. sortedRight  MergeSort(right)

9. sortedList  Merge(sortedLeft,sortedRight)
10. return sortedList

MergeSort: Running Time

 The problem is simplified to smaller steps

 for the i’th merging iteration, the

complexity of the problem is O(n)

 number of iterations is O(log n)

 running time: O(n logn)

Divide and Conquer Approach to LCS

 Path(source, sink)

 if(source & sink are in consecutive columns)

 output the longest path from source to sink

 else

 middle ← middle vertex between source & sink

 Path(source, middle)

 Path(middle, sink)

Divide and Conquer Approach to LCS

 Path(source, sink)

 if(source & sink are in consecutive columns)

 output the longest path from source to sink

 else

 middle ← middle vertex between source & sink

 Path(source, middle)

 Path(middle, sink)

The only problem left is how to find this “middle vertex”!

Computing Alignment Path Requires

Quadratic Memory

Alignment Path

 Space complexity for

computing alignment path

for sequences of length n

and m is O(nm)

 We need to keep all

backtracking references in

memory to reconstruct the

path (backtracking)

n

m

Computing Alignment Score with Linear

Memory

Alignment Score

• Space complexity of

computing just the score

itself is O(n)

• We only need the previous

column to calculate the

current column, and we

can then throw away that

previous column once

we’re done using it

2

n

Computing Alignment Score: Recycling Columns

memory for column

1 is used to

calculate column 3

memory for column

2 is used to

calculate column 4

Only two columns of scores are saved at any
given time

Crossing the Middle Line

 m/2 m

n

Prefix(i)

Suffix(i)

We want to calculate the longest

path from (0,0) to (n,m) that

passes through (i,m/2) where i

ranges from 0 to n and

represents the i-th row

Define

 length(i)

as the length of the longest path

from (0,0) to (n,m) that passes

through vertex (i, m/2)

 m/2 m

n

Prefix(i)

Suffix(i)

Define (mid,m/2) as the vertex where the longest path crosses

the middle column.

 length(mid) = optimal length = max0i n length(i)

Crossing the Middle Line

Computing Prefix(i)

• prefix(i) is the length of the longest path from

(0,0) to (i,m/2)

• Compute prefix(i) by dynamic programming in

the left half of the matrix

0 m/2 m

store prefix(i)

column

Computing Suffix(i)

• suffix(i) is the length of the longest path from (i,m/2) to (n,m)

• suffix(i) is the length of the longest path from (n,m) to (i,m/2)
with all edges reversed

• Compute suffix(i) by dynamic programming in the right half
of the “reversed” matrix

0 m/2 m

store suffix(i)

column

Length(i) = Prefix(i) + Suffix(i)

• Add prefix(i) and suffix(i) to compute length(i):
• length(i)=prefix(i) + suffix(i)

• You now have a middle vertex of the maximum
path (i,m/2) as maximum of length(i)

middle point found

0 m/2 m

0

i

Finding the Middle Point

0 m/4 m/2 3m/4 m

Finding the Middle Point again

0 m/4 m/2 3m/4 m

And Again

0 m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

Time = Area: First Pass

• On first pass, the algorithm covers the entire

area

Area = nm

Time = Area: First Pass

• On first pass, the algorithm covers the entire

area

Area = nm

Computing

prefix(i)

Computing

suffix(i)

Time = Area: Second Pass

• On second pass, the algorithm covers only

1/2 of the area

Area/2

Time = Area: Third Pass

• On third pass, only 1/4th is covered.

Area/4

Geometric Reduction At Each Iteration

1 + ½ + ¼ + ... + (½)k ≤ 2

• Runtime: O(Area) = O(nm)

first pass: 1

2nd pass: 1/2

3rd pass: 1/4

5th pass: 1/16

4th pass: 1/8

Is It Possible to Align Sequences in

Subquadratic Time?

 Dynamic Programming takes O(n2) for global

alignment

 Can we do better?

 Yes, use Four-Russians Speedup

Partitioning Sequences into Blocks

 Partition the n x n grid into blocks of size t x t

 We are comparing two sequences, each of

size n, and each sequence is sectioned off

into chunks, each of length t

 Sequence u = u1…un becomes

 |u1…ut| |ut+1…u2t| … |un-t+1…un|

 and sequence v = v1…vn becomes

 |v1…vt| |vt+1…v2t| … |vn-t+1…vn|

Partitioning Alignment Grid into Blocks

partition

n n/t

n/t

t

t n

Block Alignment

 Block alignment of sequences u and v:

1. An entire block in u is aligned with an entire

block in v

2. An entire block is inserted

3. An entire block is deleted

 Block path: a path that traverses every t x t

square through its corners

Block Alignment: Examples

valid invalid

Block Alignment Problem

 Goal: Find the longest block path through an

edit graph

 Input: Two sequences, u and v partitioned

into blocks of size t. This is equivalent to an

n x n edit graph partitioned into t x t subgrids

 Output: The block alignment of u and v with

the maximum score (longest block path

through the edit graph

Constructing Alignments within Blocks

 To solve: compute alignment score ßi,j for each

pair of blocks |u(i-1)*t+1…ui*t| and |v(j-1)*t+1…vj*t|

 How many blocks are there per sequence?

 (n/t) blocks of size t

 How many pairs of blocks for aligning the two
sequences?

 (n/t) x (n/t)

 For each block pair, solve a mini-alignment
problem of size t x t

Constructing Alignments within Blocks

n/t

Block pair represented by

each small square

Solve mini-alignmnent problems

Block Alignment: Dynamic Programming

 Let si,j denote the optimal block alignment
score between the first i blocks of u and first j
blocks of v

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 - i,j

block is the

penalty for

inserting or

deleting an entire

block

i,j is score of pair

of blocks in row i

and column j.

Block Alignment Runtime

 Indices i,j range from 0 to n/t

 Running time of algorithm is

 O([n/t]*[n/t]) = O(n2/t2)

 if we don’t count the time to compute each i,j

Block Alignment Runtime (cont’d)

 Computing all i,j requires solving (n/t)*(n/t)

mini block alignments, each of size (t*t)

 So computing all i,j takes time

 O([n/t]*[n/t]*t*t) = O(n2)

 This is the same as dynamic programming

 How do we speed this up?

Four Russians Technique

 Let t = log(n), where t is block size, n is

sequence size.

 Instead of having (n/t)*(n/t) mini-alignments,

construct 4t x 4t mini-alignments for all pairs

of strings of t nucleotides (huge size), and put

in a lookup table.

 However, size of lookup table is not really

that huge if t is small. Let t = (logn)/4. Then

4t x 4t
 = n

Look-up Table for Four Russians Technique

Lookup table “Score”

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA
…

A
A
A
A
A
A

A
A
A
A
A
C

A
A
A
A
A
G

A
A
A
A
A
T

A
A
A
A
C
A

…

each sequence

has t

nucleotides

size is only n,

instead of

(n/t)*(n/t)

New Recurrence

 The new lookup table Score is indexed by a
pair of t-nucleotide strings, so

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 – Score(ith block of v, jth block of u)

Four Russians Speedup Runtime

 Since computing the lookup table Score of

size n takes O(n) time, the running time is

mainly limited by the (n/t)*(n/t) accesses to

the lookup table

 Each access takes O(logn) time

 Overall running time: O([n2/t2]*logn)

 Since t = logn, substitute in:

 O([n2/{logn}2]*logn) > O(n2/logn)

So Far…

 We can divide up the grid into blocks and run

dynamic programming only on the corners of

these blocks

 In order to speed up the mini-alignment

calculations to under n2, we create a lookup

table of size n, which consists of all scores for

all t-nucleotide pairs

 Running time goes from quadratic, O(n2), to

subquadratic: O(n2/logn)

Four Russians Speedup for LCS

 Unlike the block partitioned graph, the LCS
path does not have to pass through the
vertices of the blocks.

block

alignment
longest common

subsequence

Block Alignment vs. LCS

 In block alignment, we only care about the

corners of the blocks.

 In LCS, we care about all points on the edges

of the blocks, because those are points that

the path can traverse.

 Recall, each sequence is of length n, each

block is of size t, so each sequence has (n/t)

blocks.

Block Alignment vs. LCS: Points Of Interest

block alignment

has (n/t)*(n/t) =

(n2/t2) points of

interest

LCS alignment

has O(n2/t)

points of

interest

Traversing Blocks for LCS

 Given alignment scores si,* in the first row and scores
s*,j in the first column of a t x t mini square, compute
alignment scores in the last row and column of the
minisquare.

 To compute the last row and the last column score, we
use these 4 variables:

1. alignment scores si,* in the first row

2. alignment scores s*,j in the first column

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)

Traversing Blocks for LCS (cont’d)

 If we used this to compute the grid, it would
take quadratic, O(n2) time, but we want to do
better.

we know

these scores

we can calculate

these scores

t x t

block

Four Russians Speedup

 Build a lookup table for all possible values of

the four variables:

1. all possible scores for the first row s*,j

2. all possible scores for the first column s*,j

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)

 For each quadruple we store the value of the

score for the last row and last column.

 This will be a huge table, but we can eliminate

alignments scores that don’t make sense

Reducing Table Size

 Alignment scores in LCS are monotonically

increasing, and adjacent elements can’t differ

by more than 1

 Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not

because 2 and 4 differ by more than 1 (and

so do 5 and 8)

 Therefore, we only need to store quadruples

whose scores are monotonically increasing

and differ by at most 1

Efficient Encoding of Alignment Scores

 Instead of recording numbers that correspond
to the index in the sequences u and v, we
can use binary to encode the differences
between the alignment scores

0 1 2 2 3 4

1 1 0 0 1 1

original encoding

binary encoding

Reducing Lookup Table Size

 2t possible scores (t = size of blocks)

 4t possible strings

 Lookup table size is (2t * 2t)*(4t * 4t) = 26t

 Let t = (logn)/4;

 Table size is: 26((logn)/4) = n(6/4) = n(3/2)

 Time = O([n2/t2]*logn)

 O([n2/{logn}2]*logn) > O(n2/logn)

Main Observation

Within a rectangle of the DP
matrix,

 values of D depend only

 on the values of A, B, C,

 and substrings xl...l’, yr…r’

Definition:

A t-block is a t  t square of the
DP matrix

Idea:

Divide matrix in t-blocks,

Precompute t-blocks

Speedup: O(t)

A B

C

D

xl xl’

yr

yr’

t

The Four-Russian Algorithm

Main structure of the algorithm:

 Divide NN DP matrix into KK log2N-

blocks that overlap by 1 column & 1 row

 For i = 1……K

 For j = 1……K

 Compute Di,j as a function of

 Ai,j, Bi,j, Ci,j, x[li…l’i], y[rj…r’j]

Time: O(N2 / log2N)

t t t

Precomputation

 By definition every cell has a value in [0, …, n]

 There are (n+1)t possible values for any t-length

row or column

 If σ = |∑|, then there are σt possible substrings of

length t

 Number of distinct computations is (n+1)2t σ2t

 t2 computations required to evaluate a t-block

 Overall: Θ((n+1)2t σ2tt2) = Ω(n2)

The Four-Russian Algorithm

Another observation:

(Assume m = 0, s = 1, d = 1)

Lemma. Two adjacent cells of F(.,.) differ by at most 1

The Four-Russian Algorithm

Definition:

 The offset vector is a

 t-long vector of values

 from {-1, 0, 1},

 where the first entry is 0

If we know the value at A,

and the top row, left column

 offset vectors,

and xl……xl’, yr……yr’,

Then we can find D

A B

C

D

xl xl’

yr

yr’

t

The Four-Russian Algorithm

Definition:

 The offset function of a t-block

 is a function that for any

 given offset vectors

 of top row, left column,

 and xl……xl’, yr……yr’,

 produces offset vectors

 of bottom row, right column

A B

C

D

xl xl’

yr

yr’

t

An Example
---- C T T C G A T G A

---- 0 0 0 0 0 0 0 0 0 0

T 0 0 1 1 1 1 1 1 1 1

T 0 0 1 2 2 2 2 2 2 2

A 0 0 1 2 2 2 3 3 3 3

C 0 1 1 2 3 3 3 3 3 3

G 0 1 1 2 3 4 4 4 4 4

T 0 1 2 2 3 4 4 5 5 5

G 0 1 2 2 3 4 4 5 6 6

C 0 1 2 2 3 4 4 5 6 6

A 0 1 2 2 3 4 5 5 6 7

An Example
---- C T T C G A T G A

T 0/0 1 0 0 1/0 0 0 0 1/0

T 0 1 1

A 0 0 1

C 1 1 0

G 0/1 0 1 1 1/1 0 0 0 1/0

T 0 0 1

G 0 0 1

C 0 0 0

A 0/1 1 0 1 0/1 1 0 1 1/1

The Four-Russian Algorithm

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

1. Cover the DP table with t-blocks

2. Initialize values F(.,.) in first row & column

3. Row-by-row, use offset values at leftmost column and top row of

each block, to find offset values at rightmost column and bottom

row

4. Let Q = total of offsets at row n; F(n, n) = Q + F(n, 0) = Q + n

Runtime: O(n2 / logn)

The Four-Russian Algorithm

t t t

Summary

 We take advantage of the fact that for each

block of t = log(n), we can pre-compute all

possible scores and store them in a lookup

table of size n(3/2)

 We used the Four Russian speedup to go

from a quadratic running time for LCS to

subquadratic running time: O(n2/logn)

