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APPROXIMATE STRING 

MATCHING: BANDED 

ALIGNMENT 



Limiting indels 

 We know how to calculate global and local 

alignments in O(mn) time  

 What if the problem definition limits the indels  

to w, where w<<n and w<<m? 

 Can we improve run time? 

 



Limiting indels 

A C C A C A C A 
0           

A 1         

C 2       

A 1     

C   0 

C     1 

A       2 

T         1 

A           2 

Example: Limit indels to 

w=2 



Banded global alignment 

 Example 

 w=2 

 What’s the 

running time? 

A C C A C A C A 

0 -2 -4 -6           

A -2 1 -1 -3 -5         

C -4 -1 2 0 -2 -4       

A -6 -3 0 1 1 -1 -3     

C   -5 -2 1 0 2 0 -2   

C     -4 -1 0 1 1 1 -1 

A       -3 0 -1 2 0 2 

T         -2 -1 0 1 0 

A           -1 0 -1 2 



DP IN LINEAR SPACE & 

DIVIDE AND CONQUER 

ALGORITHMS 



Divide and Conquer Algorithms 

 

 Divide problem into sub-problems 

 Conquer by solving sub-problems 

recursively.  If the sub-problems are small 

enough, solve them in brute force fashion 

 Combine the solutions of sub-problems 

into a solution of the original problem (tricky 

part) 



Sorting Problem 

 

 

 Given: an unsorted array 

 

 

 Goal: sort it 

 

5 2 4 7 1 3 2 6 

1 2 2 3 4 5 6 7 



Mergesort: Divide Step 

Step 1 – Divide 

 5 2 4 7 1 3 2 6 

5 2 4 7 1 3 2 6 

5 2 4 7 1 3 2 6 

5 2 4 7 1 3 2 6 

log(n) divisions to split an array of size n into single elements  



Mergesort: Conquer Step 

Step 2 – Conquer 

 

1 2 2 3 4 5 6 7 

2 4 5 7 1 2 3 6 

2 5 4 7 1 3 2 6 

5 2 4 7 1 3 2 6 

O(n) 

O(n) 

O(n) 

O(n) 

O(n logn) logn iterations, each iteration takes O(n) time.  Total Time: 



Mergesort: Combine Step 

Step 3 – Combine 

 

 

• 2 arrays of size 1 can be easily merged to 
form a sorted array of size 2  

• 2 sorted arrays of size n and m can be  
merged in O(n+m) time to form a sorted 
array of size n+m 

5 2 2 5 



Mergesort: Combine Step 

 

Combining 2 arrays of size 4 

2 4 5 7 

1 2 3 6 
1 

2 4 5 7 

2 3 6 
1 2 

4 5 7 

2 3 6 
1 2 2 

4 5 7 

3 6 
1 2 2 3 

4 5 7 

6 
1 2 2 3 4 

etc.… 
1 2 2 3 4 5 6 7 



Merge Algorithm 

1. Merge(a,b) 

2. n1  size of array a 

3. n2  size of array b 

4. an1+1   

5. an2+1   

6. i  1 

7. j  1 

8. for k  1 to n1 + n2 
9.  if ai < bj 

10.   ck  ai  

11.   i  i +1 
12.  else 

13.   ck  bj 

14.   j j+1 
15. return c 



Mergesort: Example 

20 4 7 6 1 3 9 5 

20 4 7 6 1 3 9 5 

20 4 7 6 1 3 9 5 

20 4 7 6 1 3 9 5 

4 20 6 7 1 3 5 9 

4 6 7 20 1 3 5 9 

1 3 4 5 6 7 9 20 

Divide 

Conquer 



MergeSort Algorithm 

1. MergeSort(c) 

2. n  size of array c 
3. if n = 1 

4.      return c 

5. left   list of first n/2 elements of c 

6. right   list of last n-n/2 elements of c 

7. sortedLeft    MergeSort(left) 

8. sortedRight  MergeSort(right) 

9. sortedList  Merge(sortedLeft,sortedRight) 
10. return sortedList  



MergeSort: Running Time 

 The problem is simplified to smaller steps 

 for the i’th merging iteration, the 

complexity of the problem is O(n)  

 number of iterations is O(log n)  

 running time: O(n logn) 



Divide and Conquer Approach to LCS 

        Path(source, sink) 

   if(source & sink are in consecutive columns) 

     output the longest path from source  to sink 

   else 

     middle ← middle vertex between source & sink 

     Path(source, middle) 

     Path(middle, sink) 



Divide and Conquer Approach to LCS 

        Path(source, sink) 

   if(source & sink are in consecutive columns) 

     output the longest path from source  to sink 

   else 

     middle ← middle vertex between source & sink 

     Path(source, middle) 

     Path(middle, sink) 

The only problem left is how to find this “middle vertex”! 



Computing Alignment Path Requires 

Quadratic Memory 

Alignment Path 

 Space complexity for 

computing alignment path 

for sequences of length n 

and m is O(nm) 

 We need to keep all 

backtracking references in 

memory to reconstruct the 

path (backtracking) 

n 

m 



Computing Alignment Score with Linear 

Memory 

Alignment Score 

• Space complexity of 

computing just the score 

itself is  O(n) 

• We only need the previous 

column to calculate the 

current column, and we 

can then throw away that 

previous column once 

we’re done using it 

2 

n 



Computing Alignment Score: Recycling Columns  

memory for column 

1 is used to 

calculate column 3 

memory for column 

2 is used to 

calculate column 4 

Only two columns of scores are saved at any 
given time 



Crossing the Middle Line 

                 m/2           m 

 

 

 

 

 

 

n 

Prefix(i) 

Suffix(i) 

We want to calculate the longest 

path from (0,0) to (n,m) that 

passes through (i,m/2) where i 

ranges from 0 to n and 

represents the i-th row 

Define  

              length(i)  

as the length of the longest path 

from (0,0) to (n,m) that passes 

through vertex (i, m/2) 

 



                 m/2           m 

 

 

 

 

 

 

n 

Prefix(i) 

Suffix(i) 

Define (mid,m/2) as the vertex where the longest path crosses 

the middle column.   

           length(mid) = optimal length = max0i n length(i) 

 

 

Crossing the Middle Line 



Computing Prefix(i) 

• prefix(i) is the length of the longest path from 

(0,0) to (i,m/2) 

• Compute prefix(i) by dynamic programming in 

the left half of the matrix 

0         m/2      m 

store prefix(i) 

column 



Computing Suffix(i) 

• suffix(i) is the length of the longest path from (i,m/2) to (n,m) 

• suffix(i) is the length of the longest path from (n,m) to (i,m/2) 
with all edges reversed 

• Compute suffix(i) by dynamic programming in the right half 
of the “reversed” matrix 

 

0         m/2      m 

store suffix(i) 

column 



Length(i) = Prefix(i) + Suffix(i) 

• Add prefix(i) and suffix(i) to compute length(i): 
• length(i)=prefix(i) + suffix(i)  

• You now have a middle vertex of the maximum 
path (i,m/2) as maximum of  length(i) 

middle point found 

0        m/2     m 

0 

 

 

i 



Finding the Middle Point 

0             m/4             m/2            3m/4           m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Finding the Middle Point again 

0             m/4             m/2            3m/4           m 



And Again 

0    m/8     m/4    3m/8    m/2    5m/8    3m/4  7m/8  m 



Time = Area: First Pass 

• On first pass, the algorithm covers the entire 

area 

Area = nm 



Time = Area: First Pass 

• On first pass, the algorithm covers the entire 

area 

Area = nm 

Computing 

prefix(i) 

Computing 

suffix(i) 



Time = Area: Second Pass 

• On second pass, the algorithm covers only 

1/2 of the area 

Area/2 



Time = Area: Third Pass 

• On third pass, only 1/4th is covered. 

Area/4 



Geometric Reduction At Each Iteration 

1 + ½ + ¼ + ... + (½)k ≤ 2 

• Runtime: O(Area) = O(nm)  

first pass: 1 

2nd pass: 1/2 

3rd pass: 1/4 

5th pass: 1/16 

4th pass: 1/8 



Is It Possible to Align Sequences in 

Subquadratic Time? 

 Dynamic Programming takes O(n2) for global 

alignment 

 Can we do better? 

 Yes, use Four-Russians Speedup 



Partitioning Sequences into Blocks 

 Partition the n x n grid into blocks of size t x t 

 We are comparing two sequences, each of 

size n, and each sequence is sectioned off 

into chunks, each of length t 

 Sequence u = u1…un becomes  

                 |u1…ut| |ut+1…u2t| … |un-t+1…un|  

    and sequence v = v1…vn becomes  

                 |v1…vt| |vt+1…v2t| … |vn-t+1…vn| 



Partitioning Alignment Grid  into Blocks 

partition 

n n/t 

n/t 

t 

t n 



Block Alignment 

 Block alignment of sequences u and v: 

1. An entire block in u is aligned with an entire 

block in v 

2. An entire block is inserted 

3. An entire block is deleted 

 Block path: a path that traverses every t x t 

square through its corners 



Block Alignment: Examples 

valid invalid 



Block Alignment Problem 

 Goal: Find the longest block path through an 

edit graph 

 Input: Two sequences, u and v partitioned 

into blocks of size t.  This is equivalent to an 

n x n edit graph partitioned into t x t subgrids 

 Output: The block alignment of u and v with 

the maximum score (longest block path 

through the edit graph 



Constructing Alignments within Blocks  

 To solve: compute alignment score ßi,j for each 

pair of blocks |u(i-1)*t+1…ui*t| and |v(j-1)*t+1…vj*t| 

 How many blocks are there per sequence?  

     (n/t)  blocks of size t 

 How many pairs of blocks for aligning the two 
sequences?   

     (n/t) x (n/t) 

 For each block pair, solve a mini-alignment 
problem of size t x t 



Constructing Alignments within Blocks 

n/t 

Block pair represented by 

each small square 

Solve mini-alignmnent problems 



Block Alignment: Dynamic Programming 

 Let si,j denote the optimal block alignment 
score between the first i blocks of u and first j 
blocks of v 

si,j = max 
si-1,j - block 

si,j-1 - block 

si-1,j-1 - i,j 

 

block is the 

penalty for 

inserting or 

deleting an entire 

block 

i,j is score of pair 

of blocks in row i 

and column j. 

 



Block Alignment Runtime 

 Indices i,j range from 0 to n/t 

 

 Running time of algorithm is  

              O( [n/t]*[n/t]) = O(n2/t2)  

   if we don’t count the time to compute each i,j 



Block Alignment Runtime (cont’d) 

 Computing all i,j requires solving (n/t)*(n/t) 

mini block alignments, each of size (t*t) 

 So computing all i,j takes time 

             O([n/t]*[n/t]*t*t) = O(n2) 

 This is the same as dynamic programming 

 How do we speed this up? 



Four Russians Technique 

 Let t = log(n), where t is block size, n is 

sequence size. 

 Instead of having (n/t)*(n/t) mini-alignments, 

construct 4t x 4t mini-alignments for all pairs 

of strings of t nucleotides (huge size), and put 

in a lookup table. 

 However, size of lookup table is not really 

that huge if t is small.  Let t = (logn)/4.  Then 

4t x 4t 
 = n 



Look-up Table for Four Russians Technique 

Lookup table “Score” 

AAAAAA 

AAAAAC 

AAAAAG 

AAAAAT 

AAAACA 
… 

A
A
A
A
A
A
 

A
A
A
A
A
C
 

A
A
A
A
A
G
 

A
A
A
A
A
T
 

A
A
A
A
C
A
 

…
 

each sequence 

has t 

nucleotides 

size is only n, 

instead of 

(n/t)*(n/t) 



New Recurrence 

 The new lookup table Score is indexed by a 
pair of t-nucleotide strings, so 

si,j = max 
si-1,j - block 

si,j-1 - block 

si-1,j-1 – Score(ith block of v, jth block of u) 

 



Four Russians Speedup Runtime 

 Since computing the lookup table Score of 

size n takes O(n) time, the running time is 

mainly limited by the (n/t)*(n/t) accesses to 

the lookup table 

 Each access takes O(logn) time 

 Overall running time: O( [n2/t2]*logn ) 

 Since t = logn, substitute in: 

 O( [n2/{logn}2]*logn) > O( n2/logn ) 



So Far… 

 We can divide up the grid into blocks and run 

dynamic programming only on the corners of 

these blocks 

 In order to speed up the mini-alignment 

calculations to under n2, we create a lookup 

table of size n, which consists of all scores for 

all t-nucleotide pairs 

 Running time goes from quadratic, O(n2), to 

subquadratic: O(n2/logn) 



Four Russians Speedup for LCS 

 Unlike the block partitioned graph, the LCS 
path does not have to pass through the 
vertices of the blocks. 

 

block 

alignment 
longest common 

subsequence 



Block Alignment vs. LCS 

 In block alignment, we only care about the 

corners of the blocks. 

 In LCS, we care about all points on the edges 

of the blocks, because those are points that 

the path can traverse. 

 Recall, each sequence is of length n, each 

block is of size t, so each sequence has (n/t) 

blocks. 



Block Alignment vs. LCS: Points Of Interest 

block alignment 

has (n/t)*(n/t) = 

(n2/t2) points of 

interest 

LCS alignment 

has O(n2/t) 

points of 

interest 



Traversing Blocks for LCS 

 Given alignment scores si,* in the first row and scores 
s*,j in the first column of a t x t mini square, compute 
alignment scores in the last row and column of the 
minisquare. 

 To compute the last row and the last column score, we 
use these 4 variables: 

1. alignment scores si,* in the first row 

2. alignment scores s*,j in the first column 

3. substring of sequence u in this block (4t possibilities) 

4. substring of sequence v in this block (4t possibilities) 



Traversing Blocks for LCS (cont’d) 

 If we used this to compute the grid, it would 
take quadratic, O(n2) time, but we want to do 
better. 

we know 

these scores 

we can calculate 

these scores 

t x t 

block 



Four Russians Speedup 

 Build a lookup table for all possible values of 

the four variables:  

1. all possible scores for the first row s*,j  

2. all possible scores for the first column s*,j 

3. substring of sequence u in this block (4t possibilities) 

4. substring of sequence v in this block (4t possibilities) 

 For each quadruple we store the value of the 

score for the last row and last column. 

 This will be a huge table, but we can eliminate 

alignments scores that don’t make sense 



Reducing Table Size 

 Alignment scores in LCS are monotonically 

increasing, and adjacent elements can’t differ 

by more than 1 

 Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not 

because 2 and 4 differ by more than 1 (and 

so do 5 and 8) 

 Therefore, we only need to store quadruples 

whose scores are monotonically increasing 

and differ by at most 1 



Efficient Encoding of Alignment Scores 

 Instead of recording numbers that correspond 
to the index in the sequences u and v, we 
can use binary to encode the differences 
between the alignment scores 

0 1 2 2 3 4 

1 1 0 0 1 1 

original encoding 

binary encoding 



Reducing Lookup Table Size 

 2t possible scores (t =  size of blocks) 

 4t possible strings 

 Lookup table size is (2t * 2t)*(4t * 4t) = 26t 

 Let t = (logn)/4; 

 Table size is: 26((logn)/4) = n(6/4)  = n(3/2) 

 Time = O( [n2/t2]*logn ) 

 O( [n2/{logn}2]*logn) > O( n2/logn ) 



Main Observation 

Within a rectangle of the DP 
matrix, 

 values of D depend only 

 on the values of A, B, C, 

 and substrings xl...l’, yr…r’ 

 

Definition:  

A t-block is a t  t square of the 
DP matrix 

 

Idea:  

Divide matrix in t-blocks, 

Precompute t-blocks 

 

Speedup: O(t) 

A B 

C 

D 

xl xl’ 

yr 

yr’ 

t 



The Four-Russian Algorithm 

Main structure of the algorithm: 

 Divide NN DP matrix into KK log2N-

blocks that overlap by 1 column & 1 row 

 

 For i = 1……K 

    For j = 1……K 

        Compute Di,j as a function of    

  Ai,j, Bi,j, Ci,j, x[li…l’i], y[rj…r’j] 

 

 

Time: O(N2 / log2N)  

  

 

t t t 



Precomputation 

 By definition every cell has a value in [0, …, n] 

 There are (n+1)t possible values for any t-length 

row or column 

 If σ = |∑|, then there are σt possible substrings of 

length t 

 Number of distinct computations is (n+1)2t σ2t 

 t2 computations required to evaluate a t-block 

 Overall: Θ((n+1)2t σ2tt2) = Ω(n2) 



The Four-Russian Algorithm 

Another observation: 

( Assume m = 0, s = 1, d = 1 ) 

 

Lemma. Two adjacent cells of F(.,.) differ by at most 1 

 



The Four-Russian Algorithm 

Definition: 

 The offset vector is a  

 t-long vector of values  

  from {-1, 0, 1},  

 where the first entry is 0 

 

 

If we know the value at A, 

and the top row, left column 

 offset vectors, 

and xl……xl’, yr……yr’, 

 

Then we can find D 

A B 

C 

D 

xl xl’ 

yr 

yr’ 

t 



The Four-Russian Algorithm 

Definition: 

 The offset function of a t-block 

 is a function that for any  

 given offset vectors 

 of top row, left column, 

  

     and xl……xl’, yr……yr’, 

 

 produces offset vectors 

 of bottom row, right column 

A B 

C 

D 

xl xl’ 

yr 

yr’ 

t 



An Example 
---- C T T C G A T G A 

---- 0 0 0 0 0 0 0 0 0 0 

T 0 0 1 1 1 1 1 1 1 1 

T 0 0 1 2 2 2 2 2 2 2 

A 0 0 1 2 2 2 3 3 3 3 

C 0 1 1 2 3 3 3 3 3 3 

G 0 1 1 2 3 4 4 4 4 4 

T 0 1 2 2 3 4 4 5 5 5 

G 0 1 2 2 3 4 4 5 6 6 

C 0 1 2 2 3 4 4 5 6 6 

A 0 1 2 2 3 4 5 5 6 7 



An Example 
---- C T T C G A T G A 

---- 

T 0/0 1 0 0 1/0 0 0 0 1/0 

T 0 1 1 

A 0 0 1 

C 1 1 0 

G 0/1 0 1 1 1/1 0 0 0 1/0 

T 0 0 1 

G 0 0 1 

C 0 0 0 

A 0/1 1 0 1 0/1 1 0 1 1/1 



The Four-Russian Algorithm 

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev) 

 

1. Cover the DP table with t-blocks 

2. Initialize values F(.,.) in first row & column 

3. Row-by-row, use offset values at leftmost column and top row of 

each block, to find offset values at rightmost column and bottom 

row 

4. Let Q = total of offsets at row n;  F(n, n) = Q + F(n, 0) = Q + n 

Runtime: O(n2 / logn) 



The Four-Russian Algorithm 

t t t 



Summary 

 We take advantage of the fact that for each 

block of t = log(n), we can pre-compute all 

possible scores and store them in a lookup 

table of size n(3/2) 

 We used the Four Russian speedup to go 

from a quadratic running time for LCS to 

subquadratic running time: O(n2/logn) 


