CS481: Bioinformatics
Algorithms

Can Alkan
EA224
calkan@cs.bilkent.edu.tr

http://Iwww.cs.bilkent.edu.tr/~calkan/teaching/cs481/

APPROXIMATE STRING
MATCHING: BANDED
_ALIGNMENT

Limiting indels

We know how to calculate global and local
alignments in O(mn) time

What if the problem definition limits the indels
to w, where w<<n and w<<m?

o Can we improve run time?

Limiting indels

ACCACAC A

2 Example: Limit indels to
1 w=2

> = 00O P O p

Banded global alignment

@
o
e
® =
LLl o
<
@
<
@
</
O ®
C4
< 8

What’s the

1

-2

A

running time?

VLU <= <«

DP IN LINEAR SPACE &
DIVIDE AND CONQUER
ALGORITHMS

Divide and Conquer Algorithms

o Divide problem into sub-problems

o Conquer by solving sub-problems
recursively. If the sub-problems are small
enough, solve them in brute force fashion

o Combine the solutions of sub-problems
iInto a solution of the original problem (tricky
part)

Sorting Problem

Given: an unsorted array

5124|7132 |6

Goal: sort it

112123 (4|5|6 |7

Mergesort: Divide Step

Step 1 — Divide
C 5214|7132 |6

51247 11312 |6

Q

5|2 4|7 113 2|6

S| (2| (4] |7] |1 |3]| 2| |6

log(n) divisions to split an array of size n into single elements

Mergesort: Conquer Step

Step 2 — Conquer

18] (2] 4] [7
5 7
G
2]4|5]7
1(2]23

logn iterations, each iteration takes O(n) time. Total Time:

Mergesort: Combine Step

Step 3 — Combine

S) 2 | —P» |2 |5

2 arrays of size 1 can be easily merged to
form a sorted array of size 2

2 sorted arrays of size n and m can be
merged in O(n+m) time to form a sorted
array of size n+m

Mergesort: Combine Step

Combining 2 arrays of size 4

N

(0))

o 1~

L

S|7

6

I I
w

r==1

&)

I

etc....

N
(

1

\(

\E

‘ Merge Algorithm

1. Merge(a,b)

2. nl « size of array a
3. n2« size of array b
4. Appp @

3. an2+l(_ o0

6. <1

7. Je

8 fork<1tonl+ n2
9. ifa, < b

10. G« a
11. f<—i+17
12. else

13. &< b
14. Je— j+1

/5. return c

‘ Mergesort: Example

-

Divide-

20 |4 7 9 5
/ \
20 7 6 1 3 5
/ / W
20 |4 7 6 1 3 9
N N\ s O\
20 4 7 6 E Z| E
N N ~N 7 N
4 20 6 7 1 3 5
N — ~ —
4 7 20 1 3 9
T /
1 3 4 9 20

MergeSort Algorithm

MergeSort(q)
n <« size of array ¢
ifn=1

return c
left « list of first n/2 elements of ¢
right « list of last n-n/2 elements of ¢
sortedLeft <« MergeSort(/efd
sortedRight < MergeSort(righd
sortedList < Merge(sortedLeft,sortedRigh?
return sortedList

MergeSort: Running Time

The problem is simplified to smaller steps

o for the 7'th merging iteration, the
complexity of the problem is O(n)

o number of iterations is O(log n)
o running time: O(n logn)

Divide and Conquer Approach to LLCS

Path (source, sink)
if(source & sink are in consecutive columns)
output the longest path from source to sink
else
midd/e — middle vertex between source & sink
Path (source, midd/e)
Path (midd/e, sink)

Divide and Conquer Approach to LLCS

Path (source, sink)
if(source & sink are in consecutive columns)
output the longest path from source to sink
else
middle — middle vertex between source & sink
Path (source, midd/e)
Path (midd/e, sink)

The only problem left is how to find this “middle vertex’!

Computing Alignment Path Requires

Quadratic Memory

Alignment Path

Space complexity for
computing alignment path
for sequences of length n
and mis O(nm)

We need to keep all
backtracking references in
memory to reconstruct the
path (backtracking)

n <

» 3

Computing Alignment Score with Linear
Memory

Alignment Score
Space complexity of

computing just the score el]

- @

itself is O(n)

We only need the previous pn< [

i
N

O el el el e

—
— e o o e
—

I
I
[
column to calculate the !
current column, and we |

can then throw away that
previous column once
we're done using it

Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any
given time

\
v]/[® Va2l ™ vARVEIM iM%
\ 4 Cllel™ VARV A 4 1\ 4
vlliw < el VAIRVAIL 411\ 4
\ 4 C e VARV & 4 .
v vall Il VARVEI N
memory for column memory for column
1is usedto 2 is used to

calculate column 3 calculate column 4

Crossing the Middle Line

Prefix(i)

Suffix(i)

We want to calculate the longest
path from (0,0) to (n,m) that
passes through (i,m/2) where i
ranges from 0 to n and
represents the /i-th row

Define
length(i)

as the length of the longest path
from (0,0) to (n,m) that passes
through vertex (i, m/2)

Crossing the Middle Line

m/2 m

/

Prefix(i)

Define (mid,m/2) as the vertex where the longest path crosses
the middle column.

length(mid) = optimal length = max,; ., length(i)

Computing Prefix ()

prefix(i) is the length of the longest path from
(0,0) to (i,m/2)

Compute prefix(i) by dynamic programming in
the left half of the matrix

v i \
v store prefix(i)
column

<4< € ¢ ¢ <
<

0 m/2 m

Computing Sufttix(7)

suffix(i) is the length of the longest path from (i,m/2) to (n,m)

suffix(i) is the length of the longest path from (n,m) to (i,m/2)
with all edges reversed

Compute suffix(i) by dynamic programming in the right half
of the “reversed” matrix

re ‘\
o store suffix(i)
o column
a
a
0 m/é m

Length(z) = Prefix(?) + Suffix(2)

Add prefix(/) and suffix(i/) to compute length(i):
- length()=prefix(i) + suffix(i)

You now have a middle vertex of the maximum

path (,m/2) as maximum of length(i)

VAL X &
0

o
vi¥4© }X/m\iddle point found
o
o
o
m

Q

v

VARVAL Y
ohcn

Q

0

Clea b

Finding the Middle Point

0

m/4

m/2

(\

3m/4

m

‘ Finding the Middle Point again

(\0 m/4 m/2 3m/4 m

‘ And Again

O m8 m/4 3m/8 m/2 5m/8 3m/4 7Tm/8 m

‘ Time = Area: First Pass

» On first pass, the algorithm covers the entire
area

Area = nem

+¢¢++*+¢ 5%
S
SN
ietetatetateteratoloty
ettt

e
/ gﬁ:#: {
el

A St

‘ Time = Area: First Pass

» On first pass, the algorithm covers the entire
area

e
s
e
et
e
e
e
aletee!
ey %
_ A I
Area = nem s
’ o
55055
555
¥ //g ¥ e FiFiA
iy N JLALEE]
- S

4

o
ey
f*..?_-

[

—
L

%

Time = Area: Second Pass

On second pass, the algorithm covers only
1/2 of the area

Area/?2

Time = Area: Third Pass

» On third pass, only 1/4th is covered.

Area/4

b

b

L

Geometric Reduction At Each Iteration

1+V+ W+ ...+ (M)k<?2
Runtime: O(Area) = O(nm) ,5“1 pass: 1/16

h

3rd pass: 1/

first pass: 1 4th pass: 1/8

2"d pass: 1/2

Is

| — |

t Possible to Align Sequences in

Subquadratic Time?

Dynamic Programming takes O(n?) for global
alignment

Can we do better?
Yes, use Four-Russians Speedup

Partitioning Sequences into Blocks

Partition the n x n grid into blocks of size t x t

We are comparing two sequences, each of
size n, and each sequence is sectioned off
into chunks, each of length ¢

Sequence u = u,...u, becomes
|Uq...uy| [Upq - Uy - U iq- - U
and sequence v = v,...v, becomes
Vi VY [Vieq- Vol -v | Vigeq -V

Partitioning Alignment Grid into Blocks

1

n/t

partition

> nlt

Block Alignment

Block alignment of sequences u and v:

1. An entire block in u is aligned with an entire
block in v

2. An entire block is inserted
3. An entire block is deleted

Block path: a path that traverses every t x t
square through its corners

Block Alignment: Examples

valid invalid

Block Alignment Problem

Goal: Find the longest block path through an
edit graph
Input: Two sequences, u and v partitioned

into blocks of size t. This is equivalent to an
n X n edit graph partitioned into f x t subgrids

Output: The block alignment of u and v with
the maximum score (longest block path
through the edit graph

Constructing Alignments within Blocks

To solve: compute alignment score £;; for each
pair of blocks U qytsq.- Uil @ND |V qyraq- .- Vinl

How many blocks are there per sequence?

(n/t) blocks of size t

How many pairs of blocks for aligning the two
sequences”?

(n/t) x (n/t)

For each block pair, solve a mini-alignment
problem of size t x t

Constructing Alignments within Blocks

¢ Solve mini-alignmnent problems

Block pair represented by
each small square

Block Alignment: Dynamic Programming

Let s;; denote the optimal block alignment
score between the first / blocks of u and first j

blocks of v

, A Thiock 1S the
Si-1j = Oblock penalty for
§;; = max inserting or
{ Sij-1 = Oblock > deleting an entire
block
Sictg-1 = Pij
\ J B;; is score of pair

of blocks in row i
and column j.

Block Alignment Runtime

Indices /,j range from 0 to n/t

Running time of algorithm is
O([n/f]*[n/f]) = O(n?/t?)

If we don’t count the time to compute each ,8,-,]-

Block Alignment Runtime (conrd)

Computing all 5;;requires solving (n/t)*(n/f)

mini block alignments, each of size (*t)

So computing all 5;takes time
O([n/t]*[n/f]*t*t) = O(n?)

This is the same as dynamic programming

How do we speed this up?

Four Russians Technique

Let t = log(n), where t is block size, nis
sequence size.

Instead of having (n/t)*(n/t) mini-alignments,
construct 4! x 4! mini-alignments for all pairs
of strings of t nucleotides (huge size), and put
iIn a lookup table.

However, size of lookup table is not really
that huge if tis small. Lett= (logn)/4. Then
4t x 4t = n

Look-up Table for Four Russians Technique

each sequence 2
has ¢ ! { % % Lookup table “Score”

AAAACA

]

nucleotides
AAAAAA
C) °
AAAAAG .81ze is only n,
AAAAA instead of
' [6)*(n/t)
AAAACA (n

New Recurrence

The new lookup table Score is indexed by a
pair of t-nucleotide strings, so

e

_ Si-1j = Oblock

v Sij-1 = Oblock

Si1j1 Score(i™ block of v, j™ block of u)

\

Four Russians Speedup Runtime

Since computing the lookup table Score of
size n takes O(n) time, the running time is
mainly limited by the (n/t)*(n/t) accesses to
the lookup table

Each access takes O(logn) time
Overall running time: O([n%/t?]*logn)
Since t = logn, substitute in:

O([n?/{logn}?]*logn) > O(n4/logn)

So Far...

We can divide up the grid into blocks and run
dynamic programming only on the corners of
these blocks

In order to speed up the mini-alignment
calculations to under n?, we create a lookup
table of size n, which consists of all scores for
all t-nucleotide pairs

Running time goes from quadratic, O(n?), to
subquadratic: O(n?%/logn)

Four Russians Speedup tor LLCS

Unlike the block partitioned graph, the LCS
path does not have to pass through the
vertices of the blocks.

I

block longest common
alignment subsequence

Block Alignment vs. LCS

In block alignment, we only care about the
corners of the blocks.

In LCS, we care about all points on the edges
of the blocks, because those are points that
the path can traverse.

Recall, each sequence is of length n, each
block is of size t, so each sequence has (n/t)
blocks.

Block Alignment vs. LLCS: Points Of Interest

© © © ©

© O © ©

© © © ©

© © © ©
block alignment LCS alignment
has (n/t)*(nlt) = has O(n?/t)
(n?/t2) points of points of

interest interest

Traversing Blocks for LLCS

leen alignment scores s; . in the first row and scores

S in the first column of a t x t mini square, compute
allgnment scores in the last row and column of the
minisquare.

To compute the last row and the last column score, we
use these 4 variables:

1. alignment scores s, - in the first row

2. alignment scores s. ; in the first column

3. substring of sequence u in this block (4! possibilities)
4. substring of sequence v in this block (4! possibilities)

Traversing Blocks for ILCS (cont’d)

If we used this to compute the grid, it would
take quadratic, O(n?) time, but we want to do
better.

/—\

we know S
these scores

we can calculate
< these scores

"

txt
block

Four Russians Speedup

Build a lookup table for all possible values of
the four variables:
1. all possible scores for the first row s.
2. all possible scores for the first column s.;
5. substring of sequence u in this block (4! possibilities)
4. substring of sequence v in this block (4! possibilities)

For each quadruple we store the value of the
score for the last row and last column.

This will be a huge table, but we can eliminate
alignments scores that don’t make sense

Reducing Table Size

Alignment scores in LCS are monotonically
increasing, and adjacent elements can't differ

by more than 1

Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not
because 2 and 4 differ by more than 1 (and
so do 5 and 8)

Therefore, we only need to store quadruples
whose scores are monotonically increasing
and differ by at most 1

FEtticient Encoding of Alignment Scores

Instead of recording numbers that correspond
to the index in the sequences u and v, we
can use binary to encode the differences

between the alignment scores

original encoding

0O 112)|2]3] 4
C_, 1111010 1] 1| binaryencoding

Reducing L.ookup Table Size

2t possible scores (t = size of blocks)

4t possible strings

o Lookup table size is (2t * 2Y)*(4t * 4t) = 26t
Let t = (logn)/4;

o Table size is: 26Wlogn/4) = p(6/4) = pHE3/2)
Time = O([n?/t]*logn)

O([n?/{logn}?]*logn) > O(n4/logn)

Main Observation

Within a rectangle of the DP
matrix,

values of D depend only
on the values of A, B, C,
and substrings x; ,, Y,

Definition:
A t-block is a t x t square of the
DP matrix

Idea:
Divide matrix in t-blocks,
Precompute t-blocks

Speedup: O(t)

Yr

XI XI!
A
C

D

The Four-Russian Algorithm

Main structure of the algorithm:

Divide NxN DP matrix into KxK log,N-
blocks that overlap by 1 column & 1 row

Compute D;; as a function of
Aij, Bij Cijy X[Ii...I"], yIn...r']

i,

Time: O(N?/ log2N)

Precomputation

By definition every cell has a value in [0, ..., n]

There are (n+1)! possible values for any t-length
row or column

If o = |3, then there are ot possible substrings of
length t

Number of distinct computations is (n+1)4 g2
t2 computations required to evaluate a t-block
Overall: O((n+1)% g21t?) = Q(n?)

The Four-Russian Algorithm

Another observation:
(Assumem=0,s=1,d=1)

Lemma. Two adjacent cells of F(.,.) differ by at most 1

The Four-Russian Algorithm

Definition: X|
The offset vector is a y.| A
t-long vector of values

from {-1, 0, 1},

where the first entry is O

If we know the value at A,

and the top row, left column
offset vectors,

and x;...... Xpy Vpeoone Y,

Then we can find D Yy

The Four-Russian Algorithm

Definition:

The offset function of a t-block Y| A

is a function that for any
given offset vectors
of top row, left column,

and x,...... Xps Ypeoono Yr, C

produces offset vectors
of bottom row, right column

yr’

Example

An

Example

i

An

S S ~
< S S S
(@) S S ~
foe S S S
< S S ~
S ~ ~
C S S S
@) S ~ ~
o S ~ S
ot ~ S ~
S ~ ~
o S S S
1
1
1
1
1
|| = QO <«

The Four-Russian Algorithm

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

Cover the DP table with t-blocks
Initialize values F(.,.) in first row & column

Row-by-row, use offset values at leftmost column and top row of
each block, to find offset values at rightmost column and bottom
row

Let Q = total of offsets at row n; F(n,nN)=Q+F(N,0)=Q+n

Runtime: O(n?/ logn)

1T
T T LA
ERZENE
EZEEEE
N Ty
ZEEEEN|

‘ The Four-Russian Algorithm

Summary

We take advantage of the fact that for each
block of t = log(n), we can pre-compute all
possible scores and store them in a lookup
table of size n32)

We used the Four Russian speedup to go
from a quadratic running time for LCS to
subquadratic running time: O(n4/logn)

