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APPROXIMATE STRING 

MATCHING: BANDED 

ALIGNMENT 



Limiting indels 

 We know how to calculate global and local 

alignments in O(mn) time  

 What if the problem definition limits the indels  

to w, where w<<n and w<<m? 

 Can we improve run time? 

 



Limiting indels 

A C C A C A C A 
0           

A 1         

C 2       

A 1     

C   0 

C     1 

A       2 

T         1 

A           2 

Example: Limit indels to 

w=2 



Banded global alignment 

 Example 

 w=2 

 What’s the 

running time? 

A C C A C A C A 

0 -2 -4 -6           

A -2 1 -1 -3 -5         

C -4 -1 2 0 -2 -4       

A -6 -3 0 1 1 -1 -3     

C   -5 -2 1 0 2 0 -2   

C     -4 -1 0 1 1 1 -1 

A       -3 0 -1 2 0 2 

T         -2 -1 0 1 0 

A           -1 0 -1 2 



DP IN LINEAR SPACE & 

DIVIDE AND CONQUER 

ALGORITHMS 



Divide and Conquer Algorithms 

 

 Divide problem into sub-problems 

 Conquer by solving sub-problems 

recursively.  If the sub-problems are small 

enough, solve them in brute force fashion 

 Combine the solutions of sub-problems 

into a solution of the original problem (tricky 

part) 



Sorting Problem 

 

 

 Given: an unsorted array 

 

 

 Goal: sort it 

 

5 2 4 7 1 3 2 6 

1 2 2 3 4 5 6 7 



Mergesort: Divide Step 

Step 1 – Divide 

 5 2 4 7 1 3 2 6 

5 2 4 7 1 3 2 6 

5 2 4 7 1 3 2 6 

5 2 4 7 1 3 2 6 

log(n) divisions to split an array of size n into single elements  



Mergesort: Conquer Step 

Step 2 – Conquer 

 

1 2 2 3 4 5 6 7 

2 4 5 7 1 2 3 6 

2 5 4 7 1 3 2 6 

5 2 4 7 1 3 2 6 

O(n) 

O(n) 

O(n) 

O(n) 

O(n logn) logn iterations, each iteration takes O(n) time.  Total Time: 



Mergesort: Combine Step 

Step 3 – Combine 

 

 

• 2 arrays of size 1 can be easily merged to 
form a sorted array of size 2  

• 2 sorted arrays of size n and m can be  
merged in O(n+m) time to form a sorted 
array of size n+m 

5 2 2 5 



Mergesort: Combine Step 

 

Combining 2 arrays of size 4 

2 4 5 7 

1 2 3 6 
1 

2 4 5 7 

2 3 6 
1 2 

4 5 7 

2 3 6 
1 2 2 

4 5 7 

3 6 
1 2 2 3 

4 5 7 

6 
1 2 2 3 4 

etc.… 
1 2 2 3 4 5 6 7 



Merge Algorithm 

1. Merge(a,b) 

2. n1  size of array a 

3. n2  size of array b 

4. an1+1   

5. an2+1   

6. i  1 

7. j  1 

8. for k  1 to n1 + n2 
9.  if ai < bj 

10.   ck  ai  

11.   i  i +1 
12.  else 

13.   ck  bj 

14.   j j+1 
15. return c 



Mergesort: Example 

20 4 7 6 1 3 9 5 

20 4 7 6 1 3 9 5 

20 4 7 6 1 3 9 5 

20 4 7 6 1 3 9 5 

4 20 6 7 1 3 5 9 

4 6 7 20 1 3 5 9 

1 3 4 5 6 7 9 20 

Divide 

Conquer 



MergeSort Algorithm 

1. MergeSort(c) 

2. n  size of array c 
3. if n = 1 

4.      return c 

5. left   list of first n/2 elements of c 

6. right   list of last n-n/2 elements of c 

7. sortedLeft    MergeSort(left) 

8. sortedRight  MergeSort(right) 

9. sortedList  Merge(sortedLeft,sortedRight) 
10. return sortedList  



MergeSort: Running Time 

 The problem is simplified to smaller steps 

 for the i’th merging iteration, the 

complexity of the problem is O(n)  

 number of iterations is O(log n)  

 running time: O(n logn) 



Divide and Conquer Approach to LCS 

        Path(source, sink) 

   if(source & sink are in consecutive columns) 

     output the longest path from source  to sink 

   else 

     middle ← middle vertex between source & sink 

     Path(source, middle) 

     Path(middle, sink) 



Divide and Conquer Approach to LCS 

        Path(source, sink) 

   if(source & sink are in consecutive columns) 

     output the longest path from source  to sink 

   else 

     middle ← middle vertex between source & sink 

     Path(source, middle) 

     Path(middle, sink) 

The only problem left is how to find this “middle vertex”! 



Computing Alignment Path Requires 

Quadratic Memory 

Alignment Path 

 Space complexity for 

computing alignment path 

for sequences of length n 

and m is O(nm) 

 We need to keep all 

backtracking references in 

memory to reconstruct the 

path (backtracking) 

n 

m 



Computing Alignment Score with Linear 

Memory 

Alignment Score 

• Space complexity of 

computing just the score 

itself is  O(n) 

• We only need the previous 

column to calculate the 

current column, and we 

can then throw away that 

previous column once 

we’re done using it 

2 

n 



Computing Alignment Score: Recycling Columns  

memory for column 

1 is used to 

calculate column 3 

memory for column 

2 is used to 

calculate column 4 

Only two columns of scores are saved at any 
given time 



Crossing the Middle Line 

                 m/2           m 

 

 

 

 

 

 

n 

Prefix(i) 

Suffix(i) 

We want to calculate the longest 

path from (0,0) to (n,m) that 

passes through (i,m/2) where i 

ranges from 0 to n and 

represents the i-th row 

Define  

              length(i)  

as the length of the longest path 

from (0,0) to (n,m) that passes 

through vertex (i, m/2) 

 



                 m/2           m 

 

 

 

 

 

 

n 

Prefix(i) 

Suffix(i) 

Define (mid,m/2) as the vertex where the longest path crosses 

the middle column.   

           length(mid) = optimal length = max0i n length(i) 

 

 

Crossing the Middle Line 



Computing Prefix(i) 

• prefix(i) is the length of the longest path from 

(0,0) to (i,m/2) 

• Compute prefix(i) by dynamic programming in 

the left half of the matrix 

0         m/2      m 

store prefix(i) 

column 



Computing Suffix(i) 

• suffix(i) is the length of the longest path from (i,m/2) to (n,m) 

• suffix(i) is the length of the longest path from (n,m) to (i,m/2) 
with all edges reversed 

• Compute suffix(i) by dynamic programming in the right half 
of the “reversed” matrix 

 

0         m/2      m 

store suffix(i) 

column 



Length(i) = Prefix(i) + Suffix(i) 

• Add prefix(i) and suffix(i) to compute length(i): 
• length(i)=prefix(i) + suffix(i)  

• You now have a middle vertex of the maximum 
path (i,m/2) as maximum of  length(i) 

middle point found 

0        m/2     m 

0 

 

 

i 



Finding the Middle Point 

0             m/4             m/2            3m/4           m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Finding the Middle Point again 

0             m/4             m/2            3m/4           m 



And Again 

0    m/8     m/4    3m/8    m/2    5m/8    3m/4  7m/8  m 



Time = Area: First Pass 

• On first pass, the algorithm covers the entire 

area 

Area = nm 



Time = Area: First Pass 

• On first pass, the algorithm covers the entire 

area 

Area = nm 

Computing 

prefix(i) 

Computing 

suffix(i) 



Time = Area: Second Pass 

• On second pass, the algorithm covers only 

1/2 of the area 

Area/2 



Time = Area: Third Pass 

• On third pass, only 1/4th is covered. 

Area/4 



Geometric Reduction At Each Iteration 

1 + ½ + ¼ + ... + (½)k ≤ 2 

• Runtime: O(Area) = O(nm)  

first pass: 1 

2nd pass: 1/2 

3rd pass: 1/4 

5th pass: 1/16 

4th pass: 1/8 



Is It Possible to Align Sequences in 

Subquadratic Time? 

 Dynamic Programming takes O(n2) for global 

alignment 

 Can we do better? 

 Yes, use Four-Russians Speedup 



Partitioning Sequences into Blocks 

 Partition the n x n grid into blocks of size t x t 

 We are comparing two sequences, each of 

size n, and each sequence is sectioned off 

into chunks, each of length t 

 Sequence u = u1…un becomes  

                 |u1…ut| |ut+1…u2t| … |un-t+1…un|  

    and sequence v = v1…vn becomes  

                 |v1…vt| |vt+1…v2t| … |vn-t+1…vn| 



Partitioning Alignment Grid  into Blocks 

partition 

n n/t 

n/t 

t 

t n 



Block Alignment 

 Block alignment of sequences u and v: 

1. An entire block in u is aligned with an entire 

block in v 

2. An entire block is inserted 

3. An entire block is deleted 

 Block path: a path that traverses every t x t 

square through its corners 



Block Alignment: Examples 

valid invalid 



Block Alignment Problem 

 Goal: Find the longest block path through an 

edit graph 

 Input: Two sequences, u and v partitioned 

into blocks of size t.  This is equivalent to an 

n x n edit graph partitioned into t x t subgrids 

 Output: The block alignment of u and v with 

the maximum score (longest block path 

through the edit graph 



Constructing Alignments within Blocks  

 To solve: compute alignment score ßi,j for each 

pair of blocks |u(i-1)*t+1…ui*t| and |v(j-1)*t+1…vj*t| 

 How many blocks are there per sequence?  

     (n/t)  blocks of size t 

 How many pairs of blocks for aligning the two 
sequences?   

     (n/t) x (n/t) 

 For each block pair, solve a mini-alignment 
problem of size t x t 



Constructing Alignments within Blocks 

n/t 

Block pair represented by 

each small square 

Solve mini-alignmnent problems 



Block Alignment: Dynamic Programming 

 Let si,j denote the optimal block alignment 
score between the first i blocks of u and first j 
blocks of v 

si,j = max 
si-1,j - block 

si,j-1 - block 

si-1,j-1 - i,j 

 

block is the 

penalty for 

inserting or 

deleting an entire 

block 

i,j is score of pair 

of blocks in row i 

and column j. 

 



Block Alignment Runtime 

 Indices i,j range from 0 to n/t 

 

 Running time of algorithm is  

              O( [n/t]*[n/t]) = O(n2/t2)  

   if we don’t count the time to compute each i,j 



Block Alignment Runtime (cont’d) 

 Computing all i,j requires solving (n/t)*(n/t) 

mini block alignments, each of size (t*t) 

 So computing all i,j takes time 

             O([n/t]*[n/t]*t*t) = O(n2) 

 This is the same as dynamic programming 

 How do we speed this up? 



Four Russians Technique 

 Let t = log(n), where t is block size, n is 

sequence size. 

 Instead of having (n/t)*(n/t) mini-alignments, 

construct 4t x 4t mini-alignments for all pairs 

of strings of t nucleotides (huge size), and put 

in a lookup table. 

 However, size of lookup table is not really 

that huge if t is small.  Let t = (logn)/4.  Then 

4t x 4t 
 = n 



Look-up Table for Four Russians Technique 

Lookup table “Score” 

AAAAAA 

AAAAAC 

AAAAAG 

AAAAAT 

AAAACA 
… 

A
A
A
A
A
A
 

A
A
A
A
A
C
 

A
A
A
A
A
G
 

A
A
A
A
A
T
 

A
A
A
A
C
A
 

…
 

each sequence 

has t 

nucleotides 

size is only n, 

instead of 

(n/t)*(n/t) 



New Recurrence 

 The new lookup table Score is indexed by a 
pair of t-nucleotide strings, so 

si,j = max 
si-1,j - block 

si,j-1 - block 

si-1,j-1 – Score(ith block of v, jth block of u) 

 



Four Russians Speedup Runtime 

 Since computing the lookup table Score of 

size n takes O(n) time, the running time is 

mainly limited by the (n/t)*(n/t) accesses to 

the lookup table 

 Each access takes O(logn) time 

 Overall running time: O( [n2/t2]*logn ) 

 Since t = logn, substitute in: 

 O( [n2/{logn}2]*logn) > O( n2/logn ) 



So Far… 

 We can divide up the grid into blocks and run 

dynamic programming only on the corners of 

these blocks 

 In order to speed up the mini-alignment 

calculations to under n2, we create a lookup 

table of size n, which consists of all scores for 

all t-nucleotide pairs 

 Running time goes from quadratic, O(n2), to 

subquadratic: O(n2/logn) 



Four Russians Speedup for LCS 

 Unlike the block partitioned graph, the LCS 
path does not have to pass through the 
vertices of the blocks. 

 

block 

alignment 
longest common 

subsequence 



Block Alignment vs. LCS 

 In block alignment, we only care about the 

corners of the blocks. 

 In LCS, we care about all points on the edges 

of the blocks, because those are points that 

the path can traverse. 

 Recall, each sequence is of length n, each 

block is of size t, so each sequence has (n/t) 

blocks. 



Block Alignment vs. LCS: Points Of Interest 

block alignment 

has (n/t)*(n/t) = 

(n2/t2) points of 

interest 

LCS alignment 

has O(n2/t) 

points of 

interest 



Traversing Blocks for LCS 

 Given alignment scores si,* in the first row and scores 
s*,j in the first column of a t x t mini square, compute 
alignment scores in the last row and column of the 
minisquare. 

 To compute the last row and the last column score, we 
use these 4 variables: 

1. alignment scores si,* in the first row 

2. alignment scores s*,j in the first column 

3. substring of sequence u in this block (4t possibilities) 

4. substring of sequence v in this block (4t possibilities) 



Traversing Blocks for LCS (cont’d) 

 If we used this to compute the grid, it would 
take quadratic, O(n2) time, but we want to do 
better. 

we know 

these scores 

we can calculate 

these scores 

t x t 

block 



Four Russians Speedup 

 Build a lookup table for all possible values of 

the four variables:  

1. all possible scores for the first row s*,j  

2. all possible scores for the first column s*,j 

3. substring of sequence u in this block (4t possibilities) 

4. substring of sequence v in this block (4t possibilities) 

 For each quadruple we store the value of the 

score for the last row and last column. 

 This will be a huge table, but we can eliminate 

alignments scores that don’t make sense 



Reducing Table Size 

 Alignment scores in LCS are monotonically 

increasing, and adjacent elements can’t differ 

by more than 1 

 Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not 

because 2 and 4 differ by more than 1 (and 

so do 5 and 8) 

 Therefore, we only need to store quadruples 

whose scores are monotonically increasing 

and differ by at most 1 



Efficient Encoding of Alignment Scores 

 Instead of recording numbers that correspond 
to the index in the sequences u and v, we 
can use binary to encode the differences 
between the alignment scores 

0 1 2 2 3 4 

1 1 0 0 1 1 

original encoding 

binary encoding 



Reducing Lookup Table Size 

 2t possible scores (t =  size of blocks) 

 4t possible strings 

 Lookup table size is (2t * 2t)*(4t * 4t) = 26t 

 Let t = (logn)/4; 

 Table size is: 26((logn)/4) = n(6/4)  = n(3/2) 

 Time = O( [n2/t2]*logn ) 

 O( [n2/{logn}2]*logn) > O( n2/logn ) 



Main Observation 

Within a rectangle of the DP 
matrix, 

 values of D depend only 

 on the values of A, B, C, 

 and substrings xl...l’, yr…r’ 

 

Definition:  

A t-block is a t  t square of the 
DP matrix 

 

Idea:  

Divide matrix in t-blocks, 

Precompute t-blocks 

 

Speedup: O(t) 

A B 

C 

D 

xl xl’ 

yr 

yr’ 

t 



The Four-Russian Algorithm 

Main structure of the algorithm: 

 Divide NN DP matrix into KK log2N-

blocks that overlap by 1 column & 1 row 

 

 For i = 1……K 

    For j = 1……K 

        Compute Di,j as a function of    

  Ai,j, Bi,j, Ci,j, x[li…l’i], y[rj…r’j] 

 

 

Time: O(N2 / log2N)  

  

 

t t t 



Precomputation 

 By definition every cell has a value in [0, …, n] 

 There are (n+1)t possible values for any t-length 

row or column 

 If σ = |∑|, then there are σt possible substrings of 

length t 

 Number of distinct computations is (n+1)2t σ2t 

 t2 computations required to evaluate a t-block 

 Overall: Θ((n+1)2t σ2tt2) = Ω(n2) 



The Four-Russian Algorithm 

Another observation: 

( Assume m = 0, s = 1, d = 1 ) 

 

Lemma. Two adjacent cells of F(.,.) differ by at most 1 

 



The Four-Russian Algorithm 

Definition: 

 The offset vector is a  

 t-long vector of values  

  from {-1, 0, 1},  

 where the first entry is 0 

 

 

If we know the value at A, 

and the top row, left column 

 offset vectors, 

and xl……xl’, yr……yr’, 

 

Then we can find D 

A B 

C 

D 

xl xl’ 

yr 

yr’ 

t 



The Four-Russian Algorithm 

Definition: 

 The offset function of a t-block 

 is a function that for any  

 given offset vectors 

 of top row, left column, 

  

     and xl……xl’, yr……yr’, 

 

 produces offset vectors 

 of bottom row, right column 

A B 

C 

D 

xl xl’ 

yr 

yr’ 

t 



An Example 
---- C T T C G A T G A 

---- 0 0 0 0 0 0 0 0 0 0 

T 0 0 1 1 1 1 1 1 1 1 

T 0 0 1 2 2 2 2 2 2 2 

A 0 0 1 2 2 2 3 3 3 3 

C 0 1 1 2 3 3 3 3 3 3 

G 0 1 1 2 3 4 4 4 4 4 

T 0 1 2 2 3 4 4 5 5 5 

G 0 1 2 2 3 4 4 5 6 6 

C 0 1 2 2 3 4 4 5 6 6 

A 0 1 2 2 3 4 5 5 6 7 



An Example 
---- C T T C G A T G A 

---- 

T 0/0 1 0 0 1/0 0 0 0 1/0 

T 0 1 1 

A 0 0 1 

C 1 1 0 

G 0/1 0 1 1 1/1 0 0 0 1/0 

T 0 0 1 

G 0 0 1 

C 0 0 0 

A 0/1 1 0 1 0/1 1 0 1 1/1 



The Four-Russian Algorithm 

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev) 

 

1. Cover the DP table with t-blocks 

2. Initialize values F(.,.) in first row & column 

3. Row-by-row, use offset values at leftmost column and top row of 

each block, to find offset values at rightmost column and bottom 

row 

4. Let Q = total of offsets at row n;  F(n, n) = Q + F(n, 0) = Q + n 

Runtime: O(n2 / logn) 



The Four-Russian Algorithm 

t t t 



Summary 

 We take advantage of the fact that for each 

block of t = log(n), we can pre-compute all 

possible scores and store them in a lookup 

table of size n(3/2) 

 We used the Four Russian speedup to go 

from a quadratic running time for LCS to 

subquadratic running time: O(n2/logn) 


