
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

APPROXIMATE STRING

MATCHING: BANDED

ALIGNMENT

Limiting indels

 We know how to calculate global and local

alignments in O(mn) time

 What if the problem definition limits the indels

to w, where w<<n and w<<m?

 Can we improve run time?

Limiting indels

A C C A C A C A
0

A 1

C 2

A 1

C 0

C 1

A 2

T 1

A 2

Example: Limit indels to

w=2

Banded global alignment

 Example

 w=2

 What’s the

running time?

A C C A C A C A

0 -2 -4 -6

A -2 1 -1 -3 -5

C -4 -1 2 0 -2 -4

A -6 -3 0 1 1 -1 -3

C -5 -2 1 0 2 0 -2

C -4 -1 0 1 1 1 -1

A -3 0 -1 2 0 2

T -2 -1 0 1 0

A -1 0 -1 2

DP IN LINEAR SPACE &

DIVIDE AND CONQUER

ALGORITHMS

Divide and Conquer Algorithms

 Divide problem into sub-problems

 Conquer by solving sub-problems

recursively. If the sub-problems are small

enough, solve them in brute force fashion

 Combine the solutions of sub-problems

into a solution of the original problem (tricky

part)

Sorting Problem

 Given: an unsorted array

 Goal: sort it

5 2 4 7 1 3 2 6

1 2 2 3 4 5 6 7

Mergesort: Divide Step

Step 1 – Divide

 5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

log(n) divisions to split an array of size n into single elements

Mergesort: Conquer Step

Step 2 – Conquer

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

O(n)

O(n)

O(n)

O(n)

O(n logn) logn iterations, each iteration takes O(n) time. Total Time:

Mergesort: Combine Step

Step 3 – Combine

• 2 arrays of size 1 can be easily merged to
form a sorted array of size 2

• 2 sorted arrays of size n and m can be
merged in O(n+m) time to form a sorted
array of size n+m

5 2 2 5

Mergesort: Combine Step

Combining 2 arrays of size 4

2 4 5 7

1 2 3 6
1

2 4 5 7

2 3 6
1 2

4 5 7

2 3 6
1 2 2

4 5 7

3 6
1 2 2 3

4 5 7

6
1 2 2 3 4

etc.…
1 2 2 3 4 5 6 7

Merge Algorithm

1. Merge(a,b)

2. n1 size of array a

3. n2 size of array b

4. an1+1

5. an2+1

6. i 1

7. j 1

8. for k 1 to n1 + n2
9. if ai < bj

10. ck ai

11. i i +1
12. else

13. ck bj

14. j j+1
15. return c

Mergesort: Example

20 4 7 6 1 3 9 5

20 4 7 6 1 3 9 5

20 4 7 6 1 3 9 5

20 4 7 6 1 3 9 5

4 20 6 7 1 3 5 9

4 6 7 20 1 3 5 9

1 3 4 5 6 7 9 20

Divide

Conquer

MergeSort Algorithm

1. MergeSort(c)

2. n size of array c
3. if n = 1

4. return c

5. left list of first n/2 elements of c

6. right list of last n-n/2 elements of c

7. sortedLeft MergeSort(left)

8. sortedRight MergeSort(right)

9. sortedList Merge(sortedLeft,sortedRight)
10. return sortedList

MergeSort: Running Time

 The problem is simplified to smaller steps

 for the i’th merging iteration, the

complexity of the problem is O(n)

 number of iterations is O(log n)

 running time: O(n logn)

Divide and Conquer Approach to LCS

 Path(source, sink)

 if(source & sink are in consecutive columns)

 output the longest path from source to sink

 else

 middle ← middle vertex between source & sink

 Path(source, middle)

 Path(middle, sink)

Divide and Conquer Approach to LCS

 Path(source, sink)

 if(source & sink are in consecutive columns)

 output the longest path from source to sink

 else

 middle ← middle vertex between source & sink

 Path(source, middle)

 Path(middle, sink)

The only problem left is how to find this “middle vertex”!

Computing Alignment Path Requires

Quadratic Memory

Alignment Path

 Space complexity for

computing alignment path

for sequences of length n

and m is O(nm)

 We need to keep all

backtracking references in

memory to reconstruct the

path (backtracking)

n

m

Computing Alignment Score with Linear

Memory

Alignment Score

• Space complexity of

computing just the score

itself is O(n)

• We only need the previous

column to calculate the

current column, and we

can then throw away that

previous column once

we’re done using it

2

n

Computing Alignment Score: Recycling Columns

memory for column

1 is used to

calculate column 3

memory for column

2 is used to

calculate column 4

Only two columns of scores are saved at any
given time

Crossing the Middle Line

 m/2 m

n

Prefix(i)

Suffix(i)

We want to calculate the longest

path from (0,0) to (n,m) that

passes through (i,m/2) where i

ranges from 0 to n and

represents the i-th row

Define

 length(i)

as the length of the longest path

from (0,0) to (n,m) that passes

through vertex (i, m/2)

 m/2 m

n

Prefix(i)

Suffix(i)

Define (mid,m/2) as the vertex where the longest path crosses

the middle column.

 length(mid) = optimal length = max0i n length(i)

Crossing the Middle Line

Computing Prefix(i)

• prefix(i) is the length of the longest path from

(0,0) to (i,m/2)

• Compute prefix(i) by dynamic programming in

the left half of the matrix

0 m/2 m

store prefix(i)

column

Computing Suffix(i)

• suffix(i) is the length of the longest path from (i,m/2) to (n,m)

• suffix(i) is the length of the longest path from (n,m) to (i,m/2)
with all edges reversed

• Compute suffix(i) by dynamic programming in the right half
of the “reversed” matrix

0 m/2 m

store suffix(i)

column

Length(i) = Prefix(i) + Suffix(i)

• Add prefix(i) and suffix(i) to compute length(i):
• length(i)=prefix(i) + suffix(i)

• You now have a middle vertex of the maximum
path (i,m/2) as maximum of length(i)

middle point found

0 m/2 m

0

i

Finding the Middle Point

0 m/4 m/2 3m/4 m

Finding the Middle Point again

0 m/4 m/2 3m/4 m

And Again

0 m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

Time = Area: First Pass

• On first pass, the algorithm covers the entire

area

Area = nm

Time = Area: First Pass

• On first pass, the algorithm covers the entire

area

Area = nm

Computing

prefix(i)

Computing

suffix(i)

Time = Area: Second Pass

• On second pass, the algorithm covers only

1/2 of the area

Area/2

Time = Area: Third Pass

• On third pass, only 1/4th is covered.

Area/4

Geometric Reduction At Each Iteration

1 + ½ + ¼ + ... + (½)k ≤ 2

• Runtime: O(Area) = O(nm)

first pass: 1

2nd pass: 1/2

3rd pass: 1/4

5th pass: 1/16

4th pass: 1/8

Is It Possible to Align Sequences in

Subquadratic Time?

 Dynamic Programming takes O(n2) for global

alignment

 Can we do better?

 Yes, use Four-Russians Speedup

Partitioning Sequences into Blocks

 Partition the n x n grid into blocks of size t x t

 We are comparing two sequences, each of

size n, and each sequence is sectioned off

into chunks, each of length t

 Sequence u = u1…un becomes

 |u1…ut| |ut+1…u2t| … |un-t+1…un|

 and sequence v = v1…vn becomes

 |v1…vt| |vt+1…v2t| … |vn-t+1…vn|

Partitioning Alignment Grid into Blocks

partition

n n/t

n/t

t

t n

Block Alignment

 Block alignment of sequences u and v:

1. An entire block in u is aligned with an entire

block in v

2. An entire block is inserted

3. An entire block is deleted

 Block path: a path that traverses every t x t

square through its corners

Block Alignment: Examples

valid invalid

Block Alignment Problem

 Goal: Find the longest block path through an

edit graph

 Input: Two sequences, u and v partitioned

into blocks of size t. This is equivalent to an

n x n edit graph partitioned into t x t subgrids

 Output: The block alignment of u and v with

the maximum score (longest block path

through the edit graph

Constructing Alignments within Blocks

 To solve: compute alignment score ßi,j for each

pair of blocks |u(i-1)*t+1…ui*t| and |v(j-1)*t+1…vj*t|

 How many blocks are there per sequence?

 (n/t) blocks of size t

 How many pairs of blocks for aligning the two
sequences?

 (n/t) x (n/t)

 For each block pair, solve a mini-alignment
problem of size t x t

Constructing Alignments within Blocks

n/t

Block pair represented by

each small square

Solve mini-alignmnent problems

Block Alignment: Dynamic Programming

 Let si,j denote the optimal block alignment
score between the first i blocks of u and first j
blocks of v

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 - i,j

block is the

penalty for

inserting or

deleting an entire

block

i,j is score of pair

of blocks in row i

and column j.

Block Alignment Runtime

 Indices i,j range from 0 to n/t

 Running time of algorithm is

 O([n/t]*[n/t]) = O(n2/t2)

 if we don’t count the time to compute each i,j

Block Alignment Runtime (cont’d)

 Computing all i,j requires solving (n/t)*(n/t)

mini block alignments, each of size (t*t)

 So computing all i,j takes time

 O([n/t]*[n/t]*t*t) = O(n2)

 This is the same as dynamic programming

 How do we speed this up?

Four Russians Technique

 Let t = log(n), where t is block size, n is

sequence size.

 Instead of having (n/t)*(n/t) mini-alignments,

construct 4t x 4t mini-alignments for all pairs

of strings of t nucleotides (huge size), and put

in a lookup table.

 However, size of lookup table is not really

that huge if t is small. Let t = (logn)/4. Then

4t x 4t
 = n

Look-up Table for Four Russians Technique

Lookup table “Score”

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA
…

A
A
A
A
A
A

A
A
A
A
A
C

A
A
A
A
A
G

A
A
A
A
A
T

A
A
A
A
C
A

…

each sequence

has t

nucleotides

size is only n,

instead of

(n/t)*(n/t)

New Recurrence

 The new lookup table Score is indexed by a
pair of t-nucleotide strings, so

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 – Score(ith block of v, jth block of u)

Four Russians Speedup Runtime

 Since computing the lookup table Score of

size n takes O(n) time, the running time is

mainly limited by the (n/t)*(n/t) accesses to

the lookup table

 Each access takes O(logn) time

 Overall running time: O([n2/t2]*logn)

 Since t = logn, substitute in:

 O([n2/{logn}2]*logn) > O(n2/logn)

So Far…

 We can divide up the grid into blocks and run

dynamic programming only on the corners of

these blocks

 In order to speed up the mini-alignment

calculations to under n2, we create a lookup

table of size n, which consists of all scores for

all t-nucleotide pairs

 Running time goes from quadratic, O(n2), to

subquadratic: O(n2/logn)

Four Russians Speedup for LCS

 Unlike the block partitioned graph, the LCS
path does not have to pass through the
vertices of the blocks.

block

alignment
longest common

subsequence

Block Alignment vs. LCS

 In block alignment, we only care about the

corners of the blocks.

 In LCS, we care about all points on the edges

of the blocks, because those are points that

the path can traverse.

 Recall, each sequence is of length n, each

block is of size t, so each sequence has (n/t)

blocks.

Block Alignment vs. LCS: Points Of Interest

block alignment

has (n/t)*(n/t) =

(n2/t2) points of

interest

LCS alignment

has O(n2/t)

points of

interest

Traversing Blocks for LCS

 Given alignment scores si,* in the first row and scores
s*,j in the first column of a t x t mini square, compute
alignment scores in the last row and column of the
minisquare.

 To compute the last row and the last column score, we
use these 4 variables:

1. alignment scores si,* in the first row

2. alignment scores s*,j in the first column

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)

Traversing Blocks for LCS (cont’d)

 If we used this to compute the grid, it would
take quadratic, O(n2) time, but we want to do
better.

we know

these scores

we can calculate

these scores

t x t

block

Four Russians Speedup

 Build a lookup table for all possible values of

the four variables:

1. all possible scores for the first row s*,j

2. all possible scores for the first column s*,j

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)

 For each quadruple we store the value of the

score for the last row and last column.

 This will be a huge table, but we can eliminate

alignments scores that don’t make sense

Reducing Table Size

 Alignment scores in LCS are monotonically

increasing, and adjacent elements can’t differ

by more than 1

 Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not

because 2 and 4 differ by more than 1 (and

so do 5 and 8)

 Therefore, we only need to store quadruples

whose scores are monotonically increasing

and differ by at most 1

Efficient Encoding of Alignment Scores

 Instead of recording numbers that correspond
to the index in the sequences u and v, we
can use binary to encode the differences
between the alignment scores

0 1 2 2 3 4

1 1 0 0 1 1

original encoding

binary encoding

Reducing Lookup Table Size

 2t possible scores (t = size of blocks)

 4t possible strings

 Lookup table size is (2t * 2t)*(4t * 4t) = 26t

 Let t = (logn)/4;

 Table size is: 26((logn)/4) = n(6/4) = n(3/2)

 Time = O([n2/t2]*logn)

 O([n2/{logn}2]*logn) > O(n2/logn)

Main Observation

Within a rectangle of the DP
matrix,

 values of D depend only

 on the values of A, B, C,

 and substrings xl...l’, yr…r’

Definition:

A t-block is a t t square of the
DP matrix

Idea:

Divide matrix in t-blocks,

Precompute t-blocks

Speedup: O(t)

A B

C

D

xl xl’

yr

yr’

t

The Four-Russian Algorithm

Main structure of the algorithm:

 Divide NN DP matrix into KK log2N-

blocks that overlap by 1 column & 1 row

 For i = 1……K

 For j = 1……K

 Compute Di,j as a function of

 Ai,j, Bi,j, Ci,j, x[li…l’i], y[rj…r’j]

Time: O(N2 / log2N)

t t t

Precomputation

 By definition every cell has a value in [0, …, n]

 There are (n+1)t possible values for any t-length

row or column

 If σ = |∑|, then there are σt possible substrings of

length t

 Number of distinct computations is (n+1)2t σ2t

 t2 computations required to evaluate a t-block

 Overall: Θ((n+1)2t σ2tt2) = Ω(n2)

The Four-Russian Algorithm

Another observation:

(Assume m = 0, s = 1, d = 1)

Lemma. Two adjacent cells of F(.,.) differ by at most 1

The Four-Russian Algorithm

Definition:

 The offset vector is a

 t-long vector of values

 from {-1, 0, 1},

 where the first entry is 0

If we know the value at A,

and the top row, left column

 offset vectors,

and xl……xl’, yr……yr’,

Then we can find D

A B

C

D

xl xl’

yr

yr’

t

The Four-Russian Algorithm

Definition:

 The offset function of a t-block

 is a function that for any

 given offset vectors

 of top row, left column,

 and xl……xl’, yr……yr’,

 produces offset vectors

 of bottom row, right column

A B

C

D

xl xl’

yr

yr’

t

An Example
---- C T T C G A T G A

---- 0 0 0 0 0 0 0 0 0 0

T 0 0 1 1 1 1 1 1 1 1

T 0 0 1 2 2 2 2 2 2 2

A 0 0 1 2 2 2 3 3 3 3

C 0 1 1 2 3 3 3 3 3 3

G 0 1 1 2 3 4 4 4 4 4

T 0 1 2 2 3 4 4 5 5 5

G 0 1 2 2 3 4 4 5 6 6

C 0 1 2 2 3 4 4 5 6 6

A 0 1 2 2 3 4 5 5 6 7

An Example
---- C T T C G A T G A

T 0/0 1 0 0 1/0 0 0 0 1/0

T 0 1 1

A 0 0 1

C 1 1 0

G 0/1 0 1 1 1/1 0 0 0 1/0

T 0 0 1

G 0 0 1

C 0 0 0

A 0/1 1 0 1 0/1 1 0 1 1/1

The Four-Russian Algorithm

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

1. Cover the DP table with t-blocks

2. Initialize values F(.,.) in first row & column

3. Row-by-row, use offset values at leftmost column and top row of

each block, to find offset values at rightmost column and bottom

row

4. Let Q = total of offsets at row n; F(n, n) = Q + F(n, 0) = Q + n

Runtime: O(n2 / logn)

The Four-Russian Algorithm

t t t

Summary

 We take advantage of the fact that for each

block of t = log(n), we can pre-compute all

possible scores and store them in a lookup

table of size n(3/2)

 We used the Four Russian speedup to go

from a quadratic running time for LCS to

subquadratic running time: O(n2/logn)

