CS481: Bioinformatics Algorithms

Can Alkan
EA224
calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/
APPROXIMATE STRING MATCHING: BANDED ALIGNMENT
Limiting indels

- We know how to calculate global and local alignments in $O(mn)$ time
- What if the problem definition limits the indels to w, where $w<<n$ and $w<<m$?
 - Can we improve run time?
Limiting indels

Example: Limit indels to \(w=2 \)
Banded global alignment

Example

- **w=2**

What’s the running time?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-3</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DP IN LINEAR SPACE & DIVIDE AND CONQUER ALGORITHMS
Divide and Conquer Algorithms

- **Divide** problem into sub-problems
- **Conquer** by solving sub-problems recursively. If the sub-problems are small enough, solve them in brute force fashion
- **Combine** the solutions of sub-problems into a solution of the original problem (tricky part)
Sorting Problem

- Given: an unsorted array

 | 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |

- Goal: sort it

 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 |
Mergesort: Divide Step

Step 1 – Divide

\[
\begin{array}{cccccc}
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
\end{array}
\]

log(n) divisions to split an array of size n into single elements
Mergesort: Conquer Step

Step 2 – Conquer

\[
\begin{array}{cccccc}
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
\hline
2 & 5 & 4 & 7 & 1 & 3 & 2 & 6 \\
\hline
2 & 4 & 5 & 7 & 1 & 2 & 3 & 6 \\
\hline
1 & 2 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

\([O(n)]\times \log n\) iterations, each iteration takes \(O(n)\) time. Total Time: \(O(n \log n)\)
Mergesort: Combine Step

Step 3 – Combine

2 arrays of size 1 can be easily merged to form a sorted array of size 2

2 sorted arrays of size n and m can be merged in $O(n+m)$ time to form a sorted array of size $n+m$
Combining 2 arrays of size 4

etc....

1 2 2 3 4 5 6 7
Merge Algorithm

1. **Merge(a, b)**
2. \(n1 \leftarrow \text{size of array } a \)
3. \(n2 \leftarrow \text{size of array } b \)
4. \(a_{n1+1} \leftarrow \infty \)
5. \(a_{n2+1} \leftarrow \infty \)
6. \(i \leftarrow 1 \)
7. \(j \leftarrow 1 \)
8. for \(k \leftarrow 1 \) to \(n1 + n2 \)
9. \hspace{1em} if \(a_i < b_j \)
10. \hspace{2em} \(c_k \leftarrow a_i \)
11. \hspace{2em} \(i \leftarrow i + 1 \)
12. \hspace{1em} else
13. \hspace{2em} \(c_k \leftarrow b_j \)
14. \hspace{2em} \(j \leftarrow j + 1 \)
15. **return** \(c \)
Mergesort: Example

Divide

Conquer
MergeSort Algorithm

1. MergeSort(c)
2. \(n \leftarrow \text{size of array } c \)
3. if \(n = 1 \)
4. \hspace{1cm} return c
5. \(\text{left} \leftarrow \text{list of first } n/2 \text{ elements of } c \)
6. \(\text{right} \leftarrow \text{list of last } n-n/2 \text{ elements of } c \)
7. \(\text{sortedLeft} \leftarrow \text{MergeSort(left)} \)
8. \(\text{sortedRight} \leftarrow \text{MergeSort(right)} \)
9. \(\text{sortedList} \leftarrow \text{Merge(sortedLeft, sortedRight)} \)
10. return sortedList
MergeSort: Running Time

- The problem is simplified to smaller steps
 - for the i'th merging iteration, the complexity of the problem is $O(n)$
 - number of iterations is $O(\log n)$
 - running time: $O(n \log n)$
Divide and Conquer Approach to LCS

Path\((source, \ sink)\)
- if\((source & \ sink\) are in consecutive columns)
 - output the longest path from \(source\) to \(sink\)
- else
 - \(middle \leftarrow\) middle vertex between \(source \& sink\)
 - Path\((source, middle)\)
 - Path\((middle, sink)\)
Divide and Conquer Approach to LCS

\textbf{Path}(source, sink)

- if(source & sink are in consecutive columns)
 - output the longest path from source to sink
- else
 - middle ← middle vertex between source & sink
 - Path(source, middle)
 - Path(middle, sink)

The only problem left is how to find this “middle vertex”!
Computing Alignment Path Requires Quadratic Memory

Alignment Path

- Space complexity for computing alignment path for sequences of length n and m is $O(nm)$
- We need to keep all backtracking references in memory to reconstruct the path (backtracking)
Computing Alignment Score with Linear Memory

Alignment Score

- Space complexity of computing just the score itself is $O(n)$
- We only need the previous column to calculate the current column, and we can then throw away that previous column once we’re done using it.
Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any given time

memory for column 1 is used to calculate column 3
memory for column 2 is used to calculate column 4
We want to calculate the longest path from \((0,0)\) to \((n,m)\) that passes through \((i,m/2)\) where \(i\) ranges from 0 to \(n\) and represents the \(i\)-th row.

Define

\[
\text{length}(i)
\]

as the length of the longest path from \((0,0)\) to \((n,m)\) that passes through vertex \((i, m/2)\).
Crossing the Middle Line

Define \((mid, m/2)\) as the vertex where the longest path crosses the middle column.

\[
\text{length}(mid) = \text{optimal length} = \max_{0 \leq i \leq n} \text{length}(i)
\]
Computing Prefix(i)

- $\text{prefix}(i)$ is the length of the longest path from (0,0) to $(i,m/2)$
- Compute $\text{prefix}(i)$ by dynamic programming in the left half of the matrix

```
store $\text{prefix}(i)$ column
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Computing Suffix(i)

- \textit{suffix}(i) is the length of the longest path from \((i, m/2)\) to \((n, m)\)
- \textit{suffix}(i) is the length of the longest path from \((n, m)\) to \((i, m/2)\) with all edges reversed
- Compute \textit{suffix}(i) by dynamic programming in the right half of the “reversed” matrix

\begin{center}
\begin{tabular}{ccc}
0 & \textbullet & m/2 \\
\textbullet & \textbullet & \textbullet \\
\textbullet & \textbullet & \textbullet \\
\textbullet & \textbullet & \textbullet \\
\end{tabular}
\end{center}

store \textit{suffix}(i) column
Length\((i) = Prefix(i) + Suffix(i)\)

- **Add** \(prefix(i)\) and **suffix(i)** to compute \(\text{length}(i)\):
 - \(\text{length}(i) = prefix(i) + suffix(i)\)
- **You now have a middle vertex of the maximum path** \((i,m/2)\) as maximum of \(\text{length}(i)\)
Finding the Middle Point

0 m/4 m/2 3m/4 m
Finding the Middle Point again

0 m/4 m/2 3m/4 m

Diagram with hearts and line connecting points.
And Again
Time = Area: First Pass

- On first pass, the algorithm covers the entire area

Area = $n \cdot m$
Time = Area: First Pass

- On first pass, the algorithm covers the entire area

\[\text{Area} = n \cdot m \]
On second pass, the algorithm covers only 1/2 of the area.
Time = Area: Third Pass

- On third pass, only 1/4th is covered.

Area/4
Geometric Reduction At Each Iteration

\[1 + \frac{1}{2} + \frac{1}{4} + \ldots + \left(\frac{1}{2}\right)^k \leq 2 \]

- Runtime: \(O(\text{Area}) = O(nm) \)

- **1st pass:** 1
- **2nd pass:** 1/2
- **3rd pass:** 1/4
- **4th pass:** 1/8
- **5th pass:** 1/16
Is It Possible to Align Sequences in Subquadratic Time?

- Dynamic Programming takes $O(n^2)$ for global alignment
- Can we do better?
- Yes, use *Four-Russians Speedup*
Partitioning Sequences into Blocks

- Partition the $n \times n$ grid into blocks of size $t \times t$
- We are comparing two sequences, each of size n, and each sequence is sectioned off into chunks, each of length t
- Sequence $u = u_1 \ldots u_n$ becomes
 \[|u_1 \ldots u_t| |u_{t+1} \ldots u_{2t}| \ldots |u_{n-t+1} \ldots u_n| \]
- and sequence $v = v_1 \ldots v_n$ becomes
 \[|v_1 \ldots v_t| |v_{t+1} \ldots v_{2t}| \ldots |v_{n-t+1} \ldots v_n| \]
Partitioning Alignment Grid into Blocks

\[n \]

\[t \]

\[n/t \]

partition
Block Alignment

- **Block alignment** of sequences u and v:
 1. An entire block in u is aligned with an entire block in v
 2. An entire block is inserted
 3. An entire block is deleted

- **Block path**: a path that traverses every $t \times t$ square through its corners
Block Alignment: Examples

valid

invalid
Block Alignment Problem

- **Goal**: Find the longest block path through an edit graph

- **Input**: Two sequences, u and v partitioned into blocks of size t. This is equivalent to an $n \times n$ edit graph partitioned into $t \times t$ subgrids

- **Output**: The block alignment of u and v with the maximum score (longest block path through the edit graph)
Constructing Alignments within Blocks

- To solve: compute alignment score $\beta_{i,j}$ for each pair of blocks $|u_{(i-1)t+1 \cdots i*t}|$ and $|v_{(j-1)t+1 \cdots j*t}|$
- How many blocks are there per sequence? (n/t) blocks of size t
- How many pairs of blocks for aligning the two sequences? $(n/t) \times (n/t)$
- For each block pair, solve a mini-alignment problem of size $t \times t$
Constructing Alignments within Blocks

n/t

Block pair represented by each small square

Solve mini-alignment problems
Block Alignment: Dynamic Programming

Let $s_{i,j}$ denote the optimal block alignment score between the first i blocks of u and first j blocks of v

$$s_{i,j} = \max \left\{ \begin{array}{l} s_{i-1,j} - \sigma_{\text{block}} \\ s_{i,j-1} - \sigma_{\text{block}} \\ s_{i-1,j-1} - \beta_{i,j} \end{array} \right\}$$

σ_{block} is the penalty for inserting or deleting an entire block

$\beta_{i,j}$ is score of pair of blocks in row i and column j.
Block Alignment Runtime

- Indices i,j range from 0 to n/t

- Running time of algorithm is

 $$O\left(\left\lfloor \frac{n}{t} \right\rfloor \times \left\lfloor \frac{n}{t} \right\rfloor \right) = O\left(\frac{n^2}{t^2}\right)$$

 if we don’t count the time to compute each $\beta_{i,j}$
Computing all $\beta_{i,j}$ requires solving $(n/t)*(n/t)$ mini block alignments, each of size $(t*t)$.

So computing all $\beta_{i,j}$ takes time $O([n/t]*[n/t]*t*t) = O(n^2)$.

This is the same as dynamic programming.

How do we speed this up?
Four Russians Technique

- Let $t = \log(n)$, where t is block size, n is sequence size.
- Instead of having $(n/t) \times (n/t)$ mini-alignments, construct $4^t \times 4^t$ mini-alignments for all pairs of strings of t nucleotides (huge size), and put in a lookup table.
- However, size of lookup table is not really that huge if t is small. Let $t = (\log n)/4$. Then $4^t \times 4^t = n$
Look-up Table for Four Russians Technique

Each sequence has t nucleotides

<table>
<thead>
<tr>
<th>AAAAAA</th>
<th>AAAAAA</th>
<th>AAAAAA</th>
<th>AAAAAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAA</td>
<td>AAAAAA</td>
<td>AAAAAA</td>
<td>AAAAAA</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Lookup table "Score"

Size is only n, instead of $(n/t)^*(n/t)$
New Recurrence

The new lookup table \textit{Score} is indexed by a pair of t-nucleotide strings, so

\[s_{i,j} = \max \begin{cases} s_{i-1,j} - \sigma_{\text{block}} \\ s_{i,j-1} - \sigma_{\text{block}} \\ s_{i-1,j-1} - \text{Score}(i^{th} \text{ block of } v, j^{th} \text{ block of } u) \end{cases} \]
Four Russians Speedup Runtime

- Since computing the lookup table Score of size n takes $O(n)$ time, the running time is mainly limited by the $(n/t)*(n/t)$ accesses to the lookup table.
- Each access takes $O(\log n)$ time.
- Overall running time: $O\left(\frac{n^2}{t^2}\log n\right)$.
- Since $t = \log n$, substitute in:
 - $O\left(\frac{n^2}{(\log n)^2}\log n\right) \geq O\left(\frac{n^2}{\log n}\right)$.
So Far…

- We can divide up the grid into blocks and run dynamic programming only on the corners of these blocks.
- In order to speed up the mini-alignment calculations to under n^2, we create a lookup table of size n, which consists of all scores for all t-nucleotide pairs.
- Running time goes from quadratic, $O(n^2)$, to subquadratic: $O(n^2/\log n)$.
Four Russians Speedup for LCS

Unlike the block partitioned graph, the LCS path does not have to pass through the vertices of the blocks.

block alignment

longest common subsequence
Block Alignment vs. LCS

- In block alignment, we only care about the corners of the blocks.
- In LCS, we care about all points on the edges of the blocks, because those are points that the path can traverse.
- Recall, each sequence is of length n, each block is of size t, so each sequence has (n/t) blocks.
Block Alignment vs. LCS: Points Of Interest

Block alignment has \((n/t)^*(n/t) = (n^2/t^2)\) points of interest.

LCS alignment has \(O(n^2/t)\) points of interest.
Traversing Blocks for LCS

- Given alignment scores $s_{i,*}$ in the first row and scores $s_{*,j}$ in the first column of a $t \times t$ mini square, compute alignment scores in the last row and column of the minisquare.

- To compute the last row and the last column score, we use these 4 variables:
 1. alignment scores $s_{i,*}$ in the first row
 2. alignment scores $s_{*,j}$ in the first column
 3. substring of sequence u in this block (4^t possibilities)
 4. substring of sequence v in this block (4^t possibilities)
If we used this to compute the grid, it would take quadratic, $O(n^2)$ time, but we want to do better.
Four Russians Speedup

- Build a lookup table for all possible values of the four variables:
 1. all possible scores for the first row \(s_{*,j} \)
 2. all possible scores for the first column \(s_{*,j} \)
 3. substring of sequence \(u \) in this block (\(4^t \) possibilities)
 4. substring of sequence \(v \) in this block (\(4^t \) possibilities)

- For each quadruple we store the value of the score for the last row and last column.

- This will be a huge table, but we can eliminate alignments scores that don’t make sense
Reducing Table Size

- Alignment scores in LCS are monotonically increasing, and adjacent elements can’t differ by more than 1.
- Example: 0, 1, 2, 2, 3, 4 is ok; 0, 1, 2, 4, 5, 8, is not because 2 and 4 differ by more than 1 (and so do 5 and 8).
- Therefore, we only need to store quadruples whose scores are monotonically increasing and differ by at most 1.
Efficient Encoding of Alignment Scores

- Instead of recording numbers that correspond to the index in the sequences u and v, we can use binary to encode the differences between the alignment scores.

<table>
<thead>
<tr>
<th>original encoding</th>
<th>binary encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 2 3 4</td>
<td>1 1 0 0 1 1</td>
</tr>
</tbody>
</table>
Reducing Lookup Table Size

- 2^t possible scores ($t =$ size of blocks)
- 4^t possible strings
- Lookup table size is $(2^t \times 2^t) \times (4^t \times 4^t) = 2^{6t}$
- Let $t = (\log n)/4$;
 - Table size is: $2^{6((\log n)/4)} = n^{(6/4)} = n^{(3/2)}$
- Time = $O(\left\lfloor \frac{n^2}{t^2} \right\rfloor \log n)$
- $O(\left\lfloor \frac{n^2}{\{\log n\}^2} \right\rfloor \log n) \geq O(\frac{n^2}{\log n})$
Main Observation

Within a rectangle of the DP matrix, values of D depend only on the values of A, B, C, and substrings $x_{l...l'}$, $y_{r...r'}$.

Definition:
A t-block is a $t \times t$ square of the DP matrix

Idea:
Divide matrix in t-blocks, Precompute t-blocks

Speedup: O(t)
The Four-Russian Algorithm

Main structure of the algorithm:
- Divide $N \times N$ DP matrix into $K \times K \log_2 N$-blocks that overlap by 1 column & 1 row
- For $i = 1 \ldots K$
 - For $j = 1 \ldots K$
 - Compute $D_{i,j}$ as a function of $A_{i,j}$, $B_{i,j}$, $C_{i,j}$, $x[l_i \ldots l'_i]$, $y[r_j \ldots r'_j]$

Time: $O(N^2/ \log^2 N)$
Precomputation

- By definition every cell has a value in \([0, \ldots, n]\)
- There are \((n+1)^t\) possible values for any \(t\)-length row or column
- If \(\sigma = |\Sigma|\), then there are \(\sigma^t\) possible substrings of length \(t\)
- Number of distinct computations is \((n+1)^{2t} \sigma^{2t}\)
- \(t^2\) computations required to evaluate a \(t\)-block
- Overall: \(\Theta((n+1)^{2t} \sigma^{2tt^2}) = \Omega(n^2)\)
The Four-Russian Algorithm

Another observation:
(Assume \(m = 0, \ s = 1, \ d = 1 \))

Lemma. Two adjacent cells of \(F(.,.) \) differ by at most 1
The Four-Russian Algorithm

Definition:
The offset vector is a t-long vector of values from $\{-1, 0, 1\}$, where the first entry is 0.

If we know the value at A, and the top row, left column offset vectors, and $x_l \ldots x_{l'}$, $y_r \ldots y_{r'}$,

Then we can find D.

![Diagram of the Four-Russian Algorithm]
The Four-Russian Algorithm

Definition:
The offset function of a t-block is a function that for any given offset vectors of top row, left column,

and $x_1, \ldots, x_{l'}$, $y_r, \ldots, y_{r'}$,

produces offset vectors of bottom row, right column

\[\begin{array}{cccc}
A & B & \cdots & \cdots \\
C & \cdots & \cdots & \cdots \\
D & \cdots & \cdots & \cdots \\
\end{array} \]
An Example

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
| A | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7
An Example

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0/1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0/1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0/1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1/1</td>
</tr>
</tbody>
</table>
The Four-Russian Algorithm

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

1. Cover the DP table with t-blocks
2. Initialize values $F(.,.)$ in first row & column
3. Row-by-row, use offset values at leftmost column and top row of each block, to find offset values at rightmost column and bottom row
4. Let $Q = \text{total of offsets at row } n$; \[F(n, n) = Q + F(n, 0) = Q + n \]

Runtime: $O(n^2 / \log n)$
The Four-Russian Algorithm
Summary

- We take advantage of the fact that for each block of \(t = \log(n) \), we can pre-compute all possible scores and store them in a lookup table of size \(n^{(3/2)} \)
- We used the Four Russian speedup to go from a quadratic running time for LCS to subquadratic running time: \(O(n^2 / \log n) \)