CS481: Bioinformatics Algorithms

> Can Alkan EA224 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

## Heuristic Similarity Searches

- Genomes are huge: Smith-Waterman quadratic alignment algorithms are too slow
- Alignment of two sequences usually has short identical or highly similar fragments
- Many heuristic methods (i.e., FASTA) are based on the same idea of *filtration*
  - Find short exact matches, and use them as seeds for potential match extension
  - "Filter" out positions with no extendable matches

### PatternHunter: faster and even more

#### sensitive

- BLAST: matches short consecutive sequences (consecutive seed)
- Length = k
- Example (*k* = 11):

#### 111111111111

Each 1 represents a "match"

- PatternHunter: matches short non-consecutive sequences (spaced seed)
- Increases sensitivity by locating homologies that would otherwise be missed
- Example (a spaced seed of length 18 w/ 11 "matches"):

111010010100110111

Each 0 represents a "don't care", so there can be a match or a mismatch

Spaced seeds

Example of a hit using a spaced seed:

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT... || ||||||| |||||| GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT... 111010010100110111

# Why is PH better?

 BLAST: redundant hits



PatternHunter



This results in > 1 hit and creates clusters of redundant hits This results in very few redundant hits

# Why is PH better?

#### **BLAST** may also miss a hit

GAGTACTCAACACCAACATTAGTGGGCAATGGAAAAT

9 matches

In this example, despite a clear homology, there is no sequence of continuous matches longer than length 9. BLAST uses a length 11 and because of this, BLAST does not recognize this as a hit!

Resolving this would require reducing the seed length to 9, which would have a damaging effect on speed

# Advantage of Gapped Seeds



# Why is PH better?

- Higher hit probability
- Lower expected number of random hits

# Use of Multiple Seeds

#### Basic Searching Algorithm

- 1. Select a group of spaced seed models
- 2. For each hit of each model, conduct extension to find a homology.

## Another method: BLAT

- BLAT (BLAST-Like Alignment Tool)
- Same idea as BLAST locate short sequence hits and extend

# BLAT vs. BLAST: Differences

- BLAT builds an index of the database and scans linearly through the query sequence, whereas BLAST builds an index of the query sequence and then scans linearly through the database
- Index is stored in RAM which is memory intensive, but results in faster searches

# BLAT: Fast cDNA Alignments

#### <u>Steps:</u>

- 1. Break cDNA into 500 base chunks.
- 2. Use an index to find regions in genome similar to each chunk of cDNA.
- 3. Do a detailed alignment between genomic regions and cDNA chunk.
- 4. Use dynamic programming to stitch together detailed alignments of chunks into detailed alignment of whole.

# BLAT: Indexing

- An index is built that contains the positions of each k-mer in the genome
- Each k-mer in the query sequence is compared to each k-mer in the index
- A list of 'hits' is generated positions in cDNA and in genome that match for k bases

# Indexing: An Example

#### Here is an example with k = 3:



clump: cacAATtatCACgaccgc

#### However...

 BLAT was designed to find sequences of 95% and greater similarity of length >40; may miss more divergent or shorter sequence alignments

#### PatternHunter and BLAT vs. BLAST

- PatternHunter is 5-100 times faster than Blastn, depending on data size, at the same sensitivity
- BLAT is several times faster than BLAST, but best results are limited to closely related sequences

#### HIDDEN MARKOV MODELS

# Outline

- CG-islands
- The "Fair Bet Casino"
- Hidden Markov Model
- Decoding Algorithm
- Forward-Backward Algorithm
- Profile HMMs
- HMM Parameter Estimation
- Viterbi training
- Baum-Welch algorithm

CG-Islands (=CpG islands)

- Given 4 nucleotides: probability of occurrence is ~ 1/4. Thus, probability of occurrence of a dinucleotide is ~ 1/16.
- However, the frequencies of dinucleotides in DNA sequences vary widely.
- In particular, CG is typically underrepresented (frequency of CG is typically < 1/16)</li>

# Why CG-Islands?

- CG is the least frequent dinucleotide because C in CG is easily *methylated and* has the tendency to mutate into T afterwards
- However, the methylation is suppressed around genes in a genome. So, CG appears at relatively high frequency within these CG islands
- So, finding the CG islands in a genome is an important problem

CG Islands and the "Fair Bet Casino"

- The CG islands problem can be modeled after a problem named "The Fair Bet Casino"
- The game is to flip coins, which results in only two possible outcomes: Head or Tail.
- The Fair coin will give Heads and Tails with same probability <sup>1</sup>/<sub>2</sub>.
- The Biased coin will give Heads with prob. <sup>3</sup>/<sub>4</sub>.

#### The "Fair Bet Casino" (cont'd)

Thus, we define the probabilities:

□ 
$$P(H|F) = P(T|F) = \frac{1}{2}$$

• 
$$P(H|B) = \frac{3}{4}, P(T|B) = \frac{1}{4}$$

The crooked dealer changes between Fair and Biased coins with probability 10%

#### The Fair Bet Casino Problem

• Input: A sequence  $x = x_1 x_2 x_3 \dots x_n$  of coin tosses made by two possible coins (*F* or *B*).

• Output: A sequence  $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_n$ , with each  $\pi_i$  being either *F* or *B* indicating that  $x_i$ is the result of tossing the Fair or Biased coin respectively.

## Problem...

#### Fair Bet Casino Problem

Any observed outcome of coin tosses could have been generated by any sequence of states! Need to incorporate a way to grade different sequences differently.

#### **Decoding Problem**

#### P(x | fair coin) vs. P(x | biased coin)

- Suppose first that dealer never changes coins. Some definitions:
  - P(x|fair coin): prob. of the dealer using the F coin and generating the outcome x.
  - P(x|biased coin): prob. of the dealer using the *B* coin and generating outcome *x*.

P(x | fair coin) vs. P(x | biased coin)

- $P(x|\text{fair coin})=P(x_1...x_n|\text{fair coin})$  $\Pi_{i=1,n} p(x_i|\text{fair coin})=(1/2)^n$
- $P(x|biased coin) = P(x_1...x_n|biased coin) =$

 $\Pi_{i=1,n} p(x_i | biased coin) = (3/4)^k (1/4)^{n-k} = 3^k/4^n$ 

• *k* - the number of *H*eads in *x*.

# P(x | fair coin) vs. P(x | biased coin)

P(x|fair coin) = P(x|biased coin)

• 
$$1/2^n = 3^k/4^n$$

• 
$$2^n = 3^k$$

• 
$$n = k \log_2 3$$

• when  $k = n / \log_2 3 (k \sim 0.67n)$ 

# Log-odds Ratio

We define *log-odds ratio* as follows:

#### $log_{2}(P(x|fair coin) / P(x|biased coin))$ = $\Sigma_{i=1}^{k} log_{2}(p^{+}(x_{i}) / p^{-}(x_{i}))$ = $n - k log_{2}3$

Computing Log-odds Ratio in Sliding Windows



Consider a *sliding window* of the outcome sequence. Find the log-odds for this short window.

 

 Biased coin most likely used
 Fair coin most likely used
 Log-odds value

Disadvantages:

- the length of CG-island is not known in advance
- different windows may classify the same position differently

# Hidden Markov Model (HMM)

- Can be viewed as an abstract machine with k hidden states that emits symbols from an alphabet Σ.
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
  - What state should I move to next?
  - What symbol from the alphabet  $\Sigma$  should I emit?

# Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in.
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

#### HMM Parameters

 $\Sigma$ : set of emission characters.

Ex.:  $\Sigma = \{H, T\}$  for coin tossing  $\Sigma = \{1, 2, 3, 4, 5, 6\}$  for dice tossing

Q: set of hidden states, each emitting symbols from Σ.

Q={F,B} for coin tossing

 $A = (a_{kl})$ : a  $|Q| \times |Q|$  matrix of probability of changing from state k to state l.  $a_{FF} = 0.9$   $a_{FB} = 0.1$  $a_{BF} = 0.1$   $a_{BB} = 0.9$  $E = (e_k(b))$ : a  $|Q| \times |\Sigma|$  matrix of probability of emitting symbol b while being in state k.  $e_{F}(0) = \frac{1}{2}$   $e_{F}(1) = \frac{1}{2}$  $e_{B}(0) = \frac{1}{4} e_{B}(1) = \frac{3}{4}$ 

#### HMM for Fair Bet Casino

- The Fair Bet Casino in HMM terms:
  - $\Sigma = \{0, 1\} (0 \text{ for } Tails \text{ and } 1 Heads)$
  - $Q = \{F,B\} F$  for Fair & B for Biased coin.
- Transition Probabilities A \*\*\* Emission Probabilities E

|        | Fair                         | Biased                |        | Tails(0)                  | Heads(1)                  |
|--------|------------------------------|-----------------------|--------|---------------------------|---------------------------|
| Fair   | a <sub>FF</sub> = 0.9        | a <sub>FB</sub> = 0.1 | Fair   | e <sub>F</sub> (0) = ½    | e <sub>F</sub> (1) = ½    |
| Biased | a <sub><i>BF</i></sub> = 0.1 | a <sub>BB</sub> = 0.9 | Biased | e <sub>B</sub> (0) =<br>¼ | e <sub>B</sub> (1) =<br>¾ |

#### HMM for Fair Bet Casino (cont'd)



HMM model for the Fair Bet Casino Problem

#### Hidden Paths

- A path  $\pi = \pi_1 \dots \pi_n$  in the HMM is defined as a sequence of states.
- Consider path  $\pi$  = FFFBBBBBFFF and sequence x = 01011101001

, Probability that  $x_i$  was emitted from state  $n_i$ 

# $P(x \mid \pi)$ Calculation

•  $P(x|\pi)$ : Probability that sequence x was generated by the path  $\pi$ :

$$\mathsf{P}(\boldsymbol{x}|\boldsymbol{\pi}) = \mathsf{P}(\boldsymbol{\pi}_{0} \rightarrow \boldsymbol{\pi}_{1}) \cdot \prod_{i=1}^{n} \mathsf{P}(\boldsymbol{x}_{i}|\boldsymbol{\pi}_{i}) \cdot \mathsf{P}(\boldsymbol{\pi}_{i} \rightarrow \boldsymbol{\pi}_{i+1})$$

$$= a_{\pi_{0,\pi_{1}}} \cdot \Pi e_{\pi_{i}} (x_{i}) \cdot a_{\pi_{i,\pi_{i+1}}}$$

# $P(x | \pi)$ Calculation

•  $P(x|\pi)$ : Probability that sequence x was generated by the path  $\pi$ :

$$\mathsf{P}(\boldsymbol{x}|\boldsymbol{\pi}) = \mathsf{P}(\boldsymbol{\pi}_{0} \rightarrow \boldsymbol{\pi}_{1}) \stackrel{n}{\cdot} \prod_{i=1}^{n} \mathsf{P}(\boldsymbol{x}_{i}|\boldsymbol{\pi}_{i}) \cdot \mathsf{P}(\boldsymbol{\pi}_{i} \rightarrow \boldsymbol{\pi}_{i+1})$$

$$= a_{\pi_{0}, \pi_{1}} \cdot \Pi e_{\pi_{i}} (x_{i}) \cdot a_{\pi_{i}, \pi_{i+1}}$$
  
= 
$$\Pi e_{\pi_{i+1}} (x_{i+1}) \cdot a_{\pi_{i}, \pi_{i+1}}$$
  
if we count from *i=0* instead of *i=1*

# Decoding Problem

 Goal: Find an optimal hidden path of states given observations.

- Input: Sequence of observations  $x = x_1...x_n$ generated by an HMM *M*(Σ, *Q*, *A*, *E*)
- Output: A path that maximizes  $P(x|\pi)$  over all possible paths  $\pi$ .