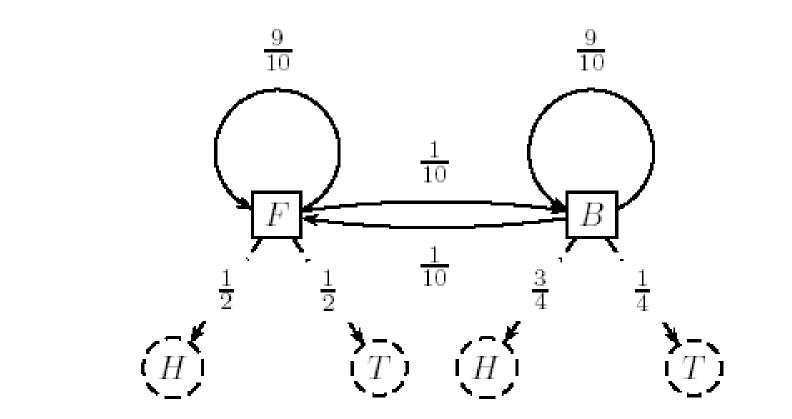
CS481: Bioinformatics Algorithms

> Can Alkan EA224 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

HMM for Fair Bet Casino (cont'd)



HMM model for the Fair Bet Casino Problem

Hidden Paths

- A path $\pi = \pi_1 \dots \pi_n$ in the HMM is defined as a sequence of states.
- Consider path π = FFFBBBBBFFF and sequence x = 01011101001

, Probability that x_i was emitted from state n_i

$P(x \mid \pi)$ Calculation

• $P(x|\pi)$: Probability that sequence x was generated by the path π :

$$\mathsf{P}(\boldsymbol{x}|\boldsymbol{\pi}) = \mathsf{P}(\boldsymbol{\pi}_{0} \rightarrow \boldsymbol{\pi}_{1}) \cdot \prod_{i=1}^{n} \mathsf{P}(\boldsymbol{x}_{i}|\boldsymbol{\pi}_{i}) \cdot \mathsf{P}(\boldsymbol{\pi}_{i} \rightarrow \boldsymbol{\pi}_{i+1})$$

$$= a_{\pi_{0,\pi_{1}}} \cdot \Pi e_{\pi_{i}} (x_{i}) \cdot a_{\pi_{i,\pi_{i+1}}}$$

Decoding Problem

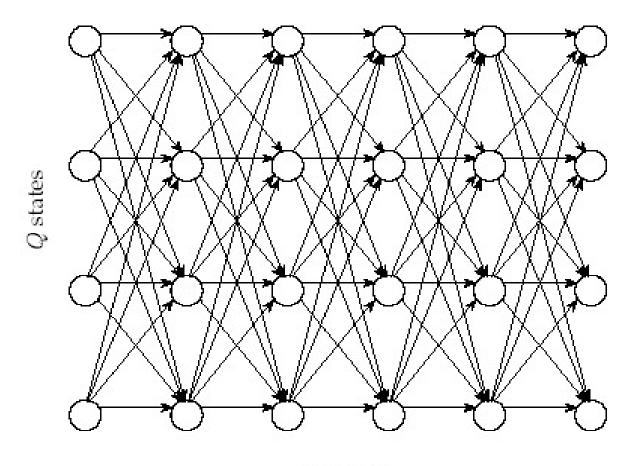
 Goal: Find an optimal hidden path of states given observations.

- Input: Sequence of observations $x = x_1 \dots x_n$ generated by an HMM *M*(Σ, *Q*, *A*, *E*)
- Output: A path that maximizes $P(x|\pi)$ over all possible paths π .

Building Manhattan for Decoding Problem

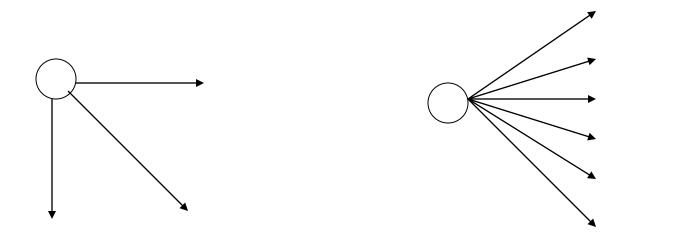
- Andrew Viterbi used the Manhattan grid model to solve the *Decoding Problem*.
- Every choice of $\pi = \pi_1 \dots \pi_n$ corresponds to a path in the graph.
- The only valid direction in the graph is eastward.
- This graph has $|Q|^2(n-1)$ edges.

Edit Graph for Decoding Problem



n layers

Decoding Problem vs. Alignment Problem



Valid directions in the alignment problem.

Valid directions in the *decoding problem.*

Decoding Problem as Finding a Longest Path in a DAG

• The *Decoding Problem* is reduced to finding a longest path in the *directed acyclic graph* (*DAG*) above.

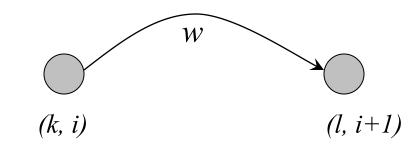
 Notes: the length of the path is defined as the product of its edges' weights, not the sum.

Decoding Problem (cont'd)

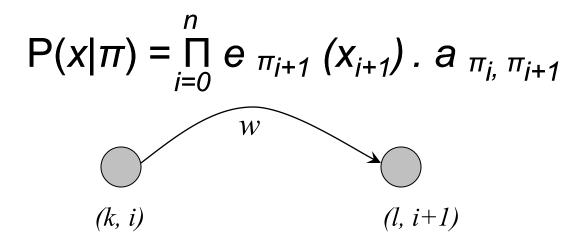
• Every path in the graph has the probability $P(x|\pi)$.

• The Viterbi algorithm finds the path that maximizes $P(x|\pi)$ among all possible paths.

The Viterbi algorithm runs in O(n|Q|²) time.

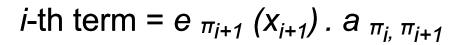


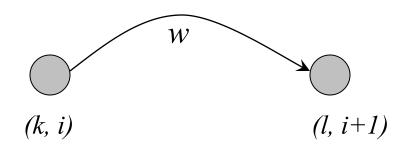
The weight **w** is given by: *???*



The weight **w** is given by:

??

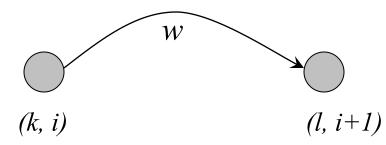




The weight **w** is given by:

2

i-th term = $e_{\pi_i}(x_i)$. $a_{\pi_{i,\pi_{i+1}}} = e_i(x_{i+1})$. a_{kl} for $\pi_i = k, \pi_{i+1} = l$



The weight $w=e_{l}(x_{i+1})$. a_{kl}

Decoding Problem and Dynamic Programming

 $S_{l,i+1} = \max_{k \in Q} \{s_{k,i} \cdot \text{ weight of edge between } (k,i) \text{ and } (l,i+1)\} = \max_{k \in Q} \{s_{k,i} \cdot a_{kl} \cdot e_l(x_{i+1}) \} = e_l(x_{i+1}) \cdot \max_{k \in Q} \{s_{k,i} \cdot a_{kl}\}$

Decoding Problem (cont'd)

- Initialization:
 - $s_{begin,0} = 1$

•
$$s_{k,0} = 0$$
 for $k \neq begin$.

• Let π^* be the optimal path. Then,

$$\mathsf{P}(x|\pi^*) = \max_{k \in Q} \{s_{k,n} : a_{k,end}\}$$

Decoding Problem (cont'd)

- Initialization:
 - $s_{begin,0} = 1$

•
$$s_{k,0} = 0$$
 for $k \neq begin$.

• Let π^* be the optimal path. Then,

$$\mathsf{P}(x|\pi^*) = \max_{k \in Q} \{s_{k,n} : a_{k,end}\}$$

Is there a problem here?

Viterbi Algorithm

The value of the product can become extremely small, which leads to overflowing.

Viterbi Algorithm

The value of the product can become extremely small, which leads to overflowing.
To avoid overflowing, use log value instead.

$$s_{k,i+1} = \log e_l(x_{i+1}) + \max_{k \in Q} \{s_{k,i} + \log(a_{kl})\}$$

FORWARD/BACKWARD

Forward-Backward Problem

Given: a sequence of coin tosses generated by an HMM.

Goal: find the probability that the dealer was using a biased coin at a particular time.

Forward Algorithm

- Define $f_{k,i}$ (forward probability) as the probability of emitting the prefix $x_1...x_i$ and reaching the state $\pi = k$.
- The recurrence for the forward algorithm:

$$f_{k,i} = e_k(x_i) \cdot \sum_{i \in Q} f_{l,i-1} \cdot a_{lk}$$

Backward Algorithm

• However, forward probability is not the only factor affecting $P(\pi_i = k | x)$.

The sequence of transitions and emissions that the HMM undergoes between π_{i+1} and π_n also affect $P(\pi_i = k | x)$. forward x_i backward

Backward Algorithm (cont'd)

- Define backward probability $b_{k,i}$ as the probability of being in state $\pi_i = k$ and emitting the suffix $x_{i+1}...x_n$.
- The recurrence for the *backward algorithm*:

$$b_{k,i} = \sum_{l \in Q} e_l(x_{i+l}) \cdot b_{l,i+l} \cdot a_{kl}$$

Forward-Backward Algorithm

The probability that the dealer used a biased coin at any moment *i*:

$$P(\pi_i = k | x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

P(x) is the sum of $P(x, \pi_i = k)$ over all k

PROFILE HMM

Finding Distant Members of a Protein Family

- A distant cousin of functionally related sequences in a protein family may have weak pairwise similarities with each member of the family and thus fail significance test.
- However, they may have weak similarities with many members of the family.
- The goal is to align a sequence to all members of the family at once.
- Family of related proteins can be represented by their multiple alignment and the corresponding profile.

Profile Representation of Protein Families

Aligned DNA sequences can be represented by a $4 \cdot n$ profile matrix reflecting the frequencies of nucleotides in every aligned position.

\mathbf{A}	.72	.14	0	0	.72	.72	0	0
\mathbf{T}	.14	.72	0	0	0	.14	.14	.86
\mathbf{G}	.14	.14	.86	.44	0	.14	0	0
\mathbf{C}	0	0	.14	.56	.28	0	$\begin{array}{c} 0\\.14\\0\\.86\end{array}$.14

Protein family can be represented by a $20 \cdot n$ profile representing frequencies of amino acids.

Profiles and HMMs

- HMMs can also be used for aligning a sequence against a profile representing protein family.
- A 20·n profile P corresponds to n sequentially linked match states M₁,...,M_n in the profile HMM of P.

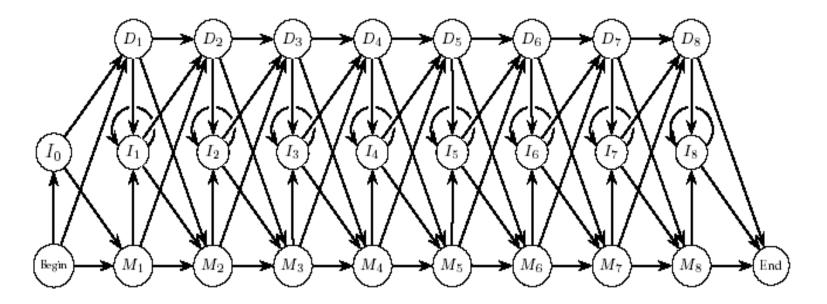
Multiple Alignments and Protein Family Classification

- Multiple alignment of a protein family shows variations in conservation along the length of a protein
- Example: after aligning many globin proteins, the biologists recognized that the helices region in globins are more conserved than others.

What are Profile HMMs ?

- A Profile HMM is a probabilistic representation of a multiple alignment.
- A given multiple alignment (of a protein family) is used to build a profile HMM.
- This model then may be used to find and score less obvious potential matches of new protein sequences.

Profile HMM



A profile HMM

Building a profile HMM

- Multiple alignment is used to construct the HMM model.
- Assign each column to a *Match* state in HMM. Add Insertion and Deletion state.
- Estimate the emission probabilities according to amino acid counts in column. Different positions in the protein will have different emission probabilities.
- Estimate the transition probabilities between Match, Deletion and Insertion states
- The HMM model gets trained to derive the optimal parameters.

States of Profile HMM

- Match states $M_1 \dots M_n$ (plus *begin/end* states)
- Insertion states $I_0 I_1 \dots I_n$
- Deletion states $D_1 \dots D_n$

Transition Probabilities in Profile HMM

• $log(a_{MI}) + log(a_{IM}) = gap initiation penalty$

• $log(a_{II})$ = gap extension penalty

Emission Probabilities in Profile HMM

Probability of emitting a symbol a at an insertion state I_j:

$$e_{lj}(a) = p(a)$$

where p(a) is the frequency of the occurrence of the symbol a in all the sequences.

Profile HMM Alignment

- Define $v_{j}^{M}(i)$ as the logarithmic likelihood score of the best path for matching $x_{1}..x_{i}$ to profile HMM ending with x_{i} emitted by the state M_{j} .
- $v_j^{(i)}$ and $v_j^{(i)}$ are defined similarly.

Profile HMM Alignment: Dynamic Programming

$$v^{M}_{j}(i) = \log \left(e_{M_{j}}(x_{i})/p(x_{i}) \right) + max \quad \begin{cases} v^{M}_{j-1}(i-1) + \log(a_{M_{j-1},M_{j}}) \\ v^{I}_{j-1}(i-1) + \log(a_{I_{j-1},M_{j}}) \\ v^{D}_{j-1}(i-1) + \log(a_{D_{j-1},M_{j}}) \end{cases}$$

$$v_{j}^{\prime}(i) = \log (e_{ij}(x_{i})/p(x_{i})) + max$$

 $v_{j}^{\prime}(i-1) + \log(a_{ij}, I_{j})$
 $v_{j}^{\prime}(i-1) + \log(a_{ij}, I_{j})$
 $v_{j}^{D}(i-1) + \log(a_{D_{j}}, I_{j})$