
CS481: Bioinformatics

Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

HMM Parameter Estimation

 So far, we have assumed that the transition So far, we have assumed that the transition

and emission probabilities are known.and emission probabilities are known.

 However, in most HMM applications, the However, in most HMM applications, the

probabilities are not known. It’s very hard to probabilities are not known. It’s very hard to

estimate the probabilities.estimate the probabilities.

HMM Parameter Estimation Problem

 Given

 HMM with states and alphabet (emission

characters)

 Independent training sequences x1, … xm

 Find HMM parameters Θ (that is, akl, ek(b))

that maximize

 P(x1, …, xm | Θ)

 the joint probability of the training sequences.

Maximize the likelihood

P(x1, …, xm | Θ) as a function of Θ is called the

likelihood of the model.

The training sequences are assumed independent,

therefore

P(x1, …, xm | Θ) = Πi P(xi | Θ)

The parameter estimation problem seeks Θ that

realizes

In practice the log likelihood is computed to avoid

underflow errors

i

ixP)|(max

Two situations

Known paths for training sequences

CpG islands marked on training sequences

One evening the casino dealer allows us to see

when he changes dice

Unknown paths

 CpG islands are not marked

Do not see when the casino dealer changes

dice

Known paths

Akl = # of times each k l is taken in the training

sequences

Ek(b) = # of times b is emitted from state k in the

training sequences

Compute akl and ek(b) as maximum likelihood

estimators:

'

'

'

)'(/)()(

/

b

kkk

l

klklkl

bEbEbe

AAa

Pseudocounts

 Some state k may not appear in any of the training

sequences. This means Akl = 0 for every state l

and akl cannot be computed with the given

equation.

 To avoid this overfitting use predetermined

pseudocounts rkl and rk(b).

 Akl = # of transitions k l + rkl

 Ek(b) = # of emissions of b from k + rk(b)

The pseudocounts reflect our prior biases about the

probability values.

Unknown paths: Viterbi training

Idea: use Viterbi decoding to compute the most
probable path for training sequence x

Start with some guess for initial parameters and
compute π* the most probable path for x using
initial parameters.

Iterate until no change in π* :

1. Determine Akl and Ek(b) as before

2. Compute new parameters akl and ek(b) using the
same formulas as before

3. Compute new π* for x and the current parameters

Viterbi training analysis

 The algorithm converges precisely

 There are finitely many possible paths.

 New parameters are uniquely determined by the current π*.

 There may be several paths for x with the same probability,
hence must compare the new π* with all previous paths
having highest probability.

 Does not maximize the likelihood Πx P(x | Θ) but the
contribution to the likelihood of the most probable path Πx
P(x | Θ, π*)

 In general performs less well than Baum-Welch

Unknown paths: Baum-Welch

Idea:

1. Guess initial values for parameters.

 art and experience, not science

2. Estimate new (better) values for parameters.

 how ?

3. Repeat until stopping criteria is met.

 what criteria ?

Better values for parameters

Would need the Akl and Ek(b) values but cannot

count (the path is unknown) and do not want to

use a most probable path.

For all states k,l, symbol b and training sequence x

Compute Akl and Ek(b) as expected

values, given the current parameters

Notation

For any sequence of characters x emitted

along some unknown path π, denote by

πi = k the assumption that the state at

position i (in which xi is emitted) is k.

Probabilistic setting for Ak,l

Given x1, … ,xm consider a discrete probability space

with elementary events

 εk,l, = “k l is taken in x1, …, xm ”

For each x in {x1,…,xm} and each position i in x let Yx,i

be a random variable defined by

Define Y = Σx Σi Yx,i random var that counts # of times

the event εk,l happens in x1,…,xm.

otherwise

landkif
Y

ii

lkix
,0

,1
)(

1

,,

The meaning of Akl

Let Akl be the expectation of Y

 E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) =

 ΣxΣi P({εk,l | πi = k and πi+1 = l}) =

 ΣxΣi P(πi = k, πi+1 = l | x)

Need to compute P(πi = k, πi+1 = l | x)

Probabilistic setting for Ek(b)

Given x1, … ,xm consider a discrete probability

space with elementary events

 εk,b = “b is emitted in state k in x1, … ,xm ”

For each x in {x1,…,xm} and each position i in x let

Yx,i be a random variable defined by

Define Y = Σx Σi Yx,i random var that counts # of

times the event εk,b happens in x1,…,xm.

otherwise

kandbxif
Y

ii

bkix
,0

,1
)(,,

The meaning of Ek(b)

Let Ek(b) be the expectation of Y

 E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) =

 ΣxΣi P({εk,b | xi = b and πi = k})

Need to compute P(πi = k | x)

x bxi

i

x bxi

iibk

ii

xkPkbxP
}|{}|{

,)|(}),|({

Computing new parameters

Consider x = x1…xn training sequence

Concentrate on positions i and i+1

Use the forward-backward values:

 fki = P(x1 … xi , πi = k)

 bki = P(xi+1 … xn | πi = k)

Compute Akl (1)

Prob k l is taken at position i of x

 P(πi = k, πi+1 = l | x1…xn) = P(x, πi = k, πi+1 = l) / P(x)

Compute P(x) using either forward or backward values

[next slide] P(x, πi = k, πi+1 = l) = bli+1 ·el(xi+1) ·akl ·fki

Expected # times k l is used in training sequences

 Akl = Σx Σi (bli+1 ·el(xi+1) ·akl ·fki) / P(x)

Compute Akl (2)

P(x, πi = k, πi+1 = l) =

P(x1…xi, πi = k, πi+1 = l, xi+1…xn) =

P(πi+1 = l, xi+1…xn | x1…xi, πi = k)·P(x1…xi,πi =k)=

P(πi+1 = l, xi+1…xn | πi = k)·fki =

P(xi+1…xn | πi = k, πi+1 = l)·P(πi+1 = l | πi = k)·fki =

P(xi+1…xn | πi+1 = l)·akl ·fki =

P(xi+2…xn | xi+1, πi+1 = l) · P(xi+1 | πi+1 = l) ·akl ·fki =

P(xi+2…xn | πi+1 = l) ·el(xi+1) ·akl ·fki =

bli+1 ·el(xi+1) ·akl ·fki

Compute Ek(b)

Prob xi of x is emitted in state k

P(πi = k | x1…xn) = P(πi = k, x1…xn)/P(x)

P(πi = k, x1…xn) = P(x1…xi,πi = k,xi+1…xn) =

P(xi+1…xn | x1…xi,πi = k) · P(x1…xi,πi = k) =

P(xi+1…xn | πi = k) · fki = bki · fki

Expected # times b is emitted in state k

x bxi

kikik

i

xPbfbE
:

)()(

Finally, new parameters

Can add pseudocounts as before.
'

'

'

)'(/)()(

/

b

kkk

l

klklkl

bEbEbe

AAa

Stopping criteria

Cannot actually reach maximum (optimization of
continuous functions)

Therefore need stopping criteria

Compute the log likelihood of the model for
current Θ

 Compare with previous log likelihood

 Stop if small difference

Stop after a certain number of iterations

x

xP)|(log

The Baum-Welch algorithm

Initialization:

 Pick the best-guess for model parameters

 (or arbitrary)

Iteration:

1. Forward for each x

2. Backward for each x

3. Calculate Akl, Ek(b)

4. Calculate new akl, ek(b)

5. Calculate new log-likelihood

Until log-likelihood does not change much

Baum-Welch analysis

Log-likelihood is increased by iterations

 Baum-Welch is a particular case of the EM

(expectation maximization) algorithm

Convergence to local maximum. Choice of

initial parameters determines local maximum to

which the algorithm converges

