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HMM Parameter Estimation 

 So far, we have assumed that the transition So far, we have assumed that the transition 

and emission probabilities are known.and emission probabilities are known.  

  

 However, in most HMM applications, the However, in most HMM applications, the 

probabilities are not known.  It’s very hard to probabilities are not known.  It’s very hard to 

estimate the probabilities.estimate the probabilities. 



HMM Parameter Estimation Problem 

 Given 

 HMM with states and alphabet (emission 

characters) 

 Independent training sequences x1, … xm  

 Find HMM parameters Θ (that is, akl, ek(b)) 

that maximize  

                    P(x1, …, xm | Θ)  

    the joint probability of the training sequences.  
 



Maximize the likelihood 

P(x1, …, xm | Θ) as a function of Θ is called the 

likelihood of the model. 

The training sequences are assumed independent, 

therefore 

P(x1, …, xm | Θ) = Πi P(xi | Θ) 

The parameter estimation problem seeks Θ that 

realizes 

 

In practice the log likelihood is computed to avoid 

underflow errors 
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Two situations 

Known paths  for training sequences 

CpG islands marked on training sequences 

One evening the casino dealer allows us to see 

when he changes dice 

Unknown paths  

 CpG islands are not marked 

Do not see when the casino dealer changes 

dice 



Known paths 

Akl = # of times each k  l is taken in the training 

sequences 

Ek(b) = # of times b is emitted from state k in the 

training sequences 

Compute akl and ek(b) as maximum likelihood 

estimators: 
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Pseudocounts 

 Some state k may not appear in any of the training 

sequences. This means Akl = 0 for every state l 

and akl cannot be computed with the given 

equation. 

 To avoid this overfitting use predetermined 

pseudocounts rkl and rk(b). 

  Akl = # of transitions k l + rkl 

  Ek(b) = # of emissions of b from k + rk(b) 

The pseudocounts reflect our prior biases about the 

probability values. 



Unknown paths: Viterbi training 

Idea: use Viterbi decoding to compute the most 
probable path for training sequence x 

Start with some guess for initial parameters and 
compute π* the most probable path for x using 
initial parameters. 

Iterate until no change in π* : 

1. Determine Akl and Ek(b) as before 

2. Compute new parameters akl and ek(b) using the 
same formulas as before 

3. Compute new π* for x and the current parameters 

 



Viterbi training analysis 

 The algorithm converges precisely 

 There are finitely many possible paths. 

 New parameters are uniquely determined by the current π*. 

 There may be several paths for x with the same probability, 
hence must compare the new π* with all previous paths 
having highest probability. 

 Does not maximize the likelihood Πx P(x | Θ) but the 
contribution to the likelihood of  the most probable path  Πx 
P(x | Θ, π*)  

 In general performs less well than Baum-Welch 

 



Unknown paths: Baum-Welch  

Idea: 

1. Guess initial values for parameters. 

   art and experience, not science 

2. Estimate new (better) values for parameters. 

   how ? 

3. Repeat until stopping criteria is met. 

   what criteria ? 



Better values for parameters 

Would need the Akl and Ek(b) values but cannot 

count (the path is unknown) and do not want to 

use a most probable path. 

For all states k,l, symbol b and training sequence x 

 

 

 

 

Compute Akl and Ek(b) as expected 

values, given the current parameters 



Notation 

For any sequence of characters x emitted 

along some unknown path π, denote by 

πi = k the assumption that the state at 

position i (in which xi is emitted) is k. 

 



Probabilistic setting for Ak,l 

Given x1, … ,xm consider a discrete probability space 

with elementary events 

  εk,l, = “k  l is taken in x1, …, xm ” 

For each x in {x1,…,xm} and each position i in x let Yx,i 

be a random variable defined by  

 

 

 

Define Y = Σx Σi Yx,i random var that counts # of times 

the event εk,l happens in x1,…,xm. 

otherwise
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The meaning of Akl 

Let Akl be the expectation of Y 

 

 E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) = 

         ΣxΣi P({εk,l | πi = k and πi+1 = l}) = 

         ΣxΣi P(πi = k, πi+1 = l | x)  

 

Need to compute P(πi = k, πi+1 = l | x)  

 



Probabilistic setting for Ek(b) 

Given x1, … ,xm consider a discrete probability 

space with elementary events  

  εk,b = “b is emitted in state k in x1, … ,xm ” 

For each x in {x1,…,xm} and each position i in x let 

Yx,i be a random variable defined by  

 

 

Define Y = Σx Σi Yx,i random var that counts # of 

times the event εk,b happens in x1,…,xm. 

otherwise
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The meaning of Ek(b) 

Let Ek(b) be the expectation of Y 

 

 E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) = 

 ΣxΣi P({εk,b | xi = b and πi = k})  

 

 

Need to compute P(πi = k | x) 

x bxi
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Computing new parameters 

Consider x = x1…xn  training sequence 

Concentrate on positions i and i+1  

 

 

 

 

Use the forward-backward values:  

  fki = P(x1 … xi , πi = k) 

  bki = P(xi+1 … xn | πi = k) 

 

 



Compute Akl    (1) 

Prob k l is taken at position i of x 

 P(πi = k, πi+1 = l | x1…xn) = P(x, πi = k, πi+1 = l) / P(x) 

 

Compute P(x) using either forward or backward values 

[next slide] P(x, πi = k, πi+1 = l) = bli+1 ·el(xi+1) ·akl ·fki 

  

Expected # times k l is used in training sequences 

  Akl = Σx Σi (bli+1 ·el(xi+1) ·akl ·fki) / P(x) 



Compute Akl    (2) 

P(x, πi = k, πi+1 = l) =  

P(x1…xi, πi = k, πi+1 = l, xi+1…xn) = 

P(πi+1 = l, xi+1…xn | x1…xi, πi = k)·P(x1…xi,πi =k)= 

P(πi+1 = l, xi+1…xn | πi = k)·fki = 

P(xi+1…xn | πi = k, πi+1 = l)·P(πi+1 = l | πi = k)·fki = 

P(xi+1…xn | πi+1 = l)·akl ·fki = 

P(xi+2…xn | xi+1, πi+1 = l) · P(xi+1 | πi+1 = l) ·akl ·fki = 

P(xi+2…xn | πi+1 = l) ·el(xi+1) ·akl ·fki = 

bli+1 ·el(xi+1) ·akl ·fki  



Compute Ek(b) 

Prob xi of x is emitted in state k 

P(πi = k | x1…xn) = P(πi = k, x1…xn)/P(x)  
 

P(πi = k, x1…xn) = P(x1…xi,πi = k,xi+1…xn) =  

P(xi+1…xn | x1…xi,πi = k) · P(x1…xi,πi = k) = 

P(xi+1…xn | πi = k) · fki = bki · fki 

Expected # times b is emitted in state k 

x bxi
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Finally, new parameters 

 

 

 

 

 

 

Can add pseudocounts as before. 
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Stopping criteria 

Cannot actually reach maximum (optimization of 
continuous functions) 

Therefore need stopping criteria 

Compute the log likelihood of  the model for 
current Θ 

 

 Compare with previous log likelihood 

 Stop if small difference 

Stop after a certain number of iterations 
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The Baum-Welch algorithm 

Initialization: 

 Pick the best-guess for model parameters 

  (or arbitrary) 

Iteration: 

1. Forward for each x 

2. Backward for each x 

3. Calculate Akl, Ek(b) 

4. Calculate new akl, ek(b) 

5. Calculate new log-likelihood 

Until log-likelihood does not change much 



Baum-Welch  analysis  

Log-likelihood is increased by iterations 

 Baum-Welch is a particular case of the EM 

(expectation maximization) algorithm 

Convergence to local maximum. Choice of 

initial parameters determines local maximum to 

which the algorithm converges 


