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Introduction

» RNAs functionalities depend on its structural features

Number of known RNA structures is still limited

» Secondary structure or folding of RNA sequence: set of
formed base-pairs (A,G,C,U)

tertiary structure: actual three dimensional molecule structure

» RNA folding: optimization problem, choosing the folding
with the maximum score after giving a score for every
possible folding of a RNA sequence

Standard scoring approach: sum of scores of local structural
elements (basic: Nussinov&Jacobson, complex: Turner99 model)
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Introduction

» The parameter values (i.e. scores of each local element)
traditionally obtained from wet-lab experiments

fine-tuned parameter estimation based on machine-learning
(ML) techniques possible using known RNA structures

» Today model parameterization remained fairly constant

Having few parameters corresponding score of one particular
local configuration

» Contribution: much richer parameterizations (=70.000)
models based on the structural elements defined by Turner99

score of each structural element is composed of the sum of
scores of many fine-grained local features

4 Advanced Topics in Computational Biology



Introduction

Fig.1. RNA secondary structure. The figure exemplifies a secondary structure
of an RNA sequence. Consecutive bases in the sdquence are connected with (short)
black edges, where base-pairs appear as blue (longer) edges. The labels within the
loops stand for loop types, where H denotes a hairpin, I denotes an internal-loop, M
denotes a multi-loop, and X denotes an erternal-loop. Drawing was made using the
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Preliminaries and Problem Definition

» Problem: given an RNA sequence x, find a folding 'y €Y
s.t. G(x, "y) is maximal

index-pairs of the form (i, j),i <j

sequence-folding pair (x, y), where x is an RNA sequence and y
is the folding of x

scoring model G, function that assigns real-values to sequence-
folding pairs (x, y)

» fs: Folding prediction algorithm

U= fo(x) = argmax, -y, {G(z,y)}
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Preliminaries and Problem Definition

» Linear model

D, the set of different features
®(x,y) feature representation of (x,y)

@, corresponds to the ith feature in ®.

Each feature in @ is associated with a score (or a weight), w
w; is the weight of the ith feature in @
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Feature Representations

» Two kinds of features (for examples, refer slide 5)
Binary features

occurrence values are always |, thus the scores of such occurrences
are simply the corresponding feature weights

Example: hairpin_base 0=G_+1=C_-2=U (pos. |7 and 25 in slide 5)

unpaired-base of type G inside a hairpin at a sequence position i, while
positions i + | and i — 2 contain bases of types C and U respectively

Real-valued features
set of real-valued length features

Example: intervals of unpaired bases within hairpins (interval 16-20)

In this work, value of an occurrence of a length feature is log of the
interval length
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Learning Algorithm

» Goal of the learning algorithm:

find a set of parameter values w such that the expected cost
over unseen sequences x and their true foldings y is minimal

Updating weight vector, w

wiTh p(y,9) =0,
w4 1,0(x,y) — ;P(x, 7). otherwise,

7, =min | 1 @(JT,Q)T cwiTl — ‘f’(f U)T w4 p(ygﬁ')
; - |D(z, 5) — D(z,y)| 2

Decrease the weights of features appearing only in the predicted
structure, and

increase the weights of features appearing only in the correct
structure
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Experiments
» Data set: (S-Full) is based on the RNA-Strand dataset

contains known RNA secondary structures for a diverse set of
RNA families across various organisms.

» Models: StmedComed, SthishComed, StmedCohigh and SthehCohigh

basic model enriched with varying amounts of structural (St)
and contextual (Co) information
Also baseline model (Baseline) which includes a trivial amount

of contextual information

» Measures: sensitivity, positive predictive value (PPV), and
F -measure
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Experiments

» Performance on S-AlgTrain as a function of the number of
training iterations
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Experiments

» Performance of final models on the dev set S-AlgTest

Model # Params|Sens(%) PPV (%) Fi1(%)
Baseline 226 56.9 55.3 55.8
stmedgomed 4,054 69.1 66.3 67.4
sthighgomed 7.075 72.3 70.3  71.0
st™edconih || 37 846 81.4 80.0  80.5
stk coian | 68,606 83.8 83.0 83.2
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Experiments
» Effect of training set size on validation-set accuracies
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Experiments

» F, scores (in %) of on the development set, grouped by
RNA family

Familiy (#instances) stmedggmed gghiahggmed gpmedgghioh gphishophtoh |\ Tyrperdd LAM-CG
Hammerhead Ribozyme(12) 57.9 HE.3 698 TH.B 43.9 45.5
Group I Intron(11) 55.2 h8.T T3.5 T0.5 60.4 60.6
Cis-regulatory element(11) 45.9 46.1 B1.8 85.2 61.1 61.2
Transfer Messenger RNA(70) 55.2 7.6 69.7 70.8 37.5 49.5
58 Ribosomal RNA (27) 820.2 90.9 94.1 03.9 68.9 79.5
Unknown(48) 93.9 94.1 95.7 0948 01.14 92.2
Ribonuclease P RNA(72) 62.0 70.3 B4.T BT.7 58.6 61.2
16S Ribosomal RNA(112) 57.9 65.4 81.0 B6.3 55.2 62.3
Signal Recognition Particle RNA(62) 61.5 62.7 T2.6 76.2 66.6 64.5
Transfer RNA (80) 91.8 94.2 02.2 028 60.7 79.5
23S Ribosomal RNA(28) 53.6 54.0 61.2 68.6 58.5 60.0
Other ENA(11) 65.9 66.4 T1.8 73.5 61.1 62.2
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Experiments

» Final results on the test set

Model Desc # Params|F (%)
Turner99+Partition  [11] 363 61.7
Turner99 |11] 363 60.0
Turner99 (no dangles) 315 56.5
I BL-FR Ché 7,726 69.7
T 1 BL* Ch4.2 363 67.9
t 1 BL (no dangles) Ch4.2 315 68.0
I 1 LAM-CG (CG*) Ch4.1 363 67.0
T 1 DIM-CG Ch4.1 363 65.8
* 1 CG 1.1 |19] 363 64.0
» CONTRAFold 2.0 [18]20] 714 68.8
T stmedgom 4040 69.2
t gghighgomed 7150 72.8
t stmedgohioh 37866 | 80.4
t sthighgohish 69,603 | 84.1
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Conclusion

» Richer parameterizations is beneficial to ML-based RNA
structure prediction

Best model yields an error reduction of 50% over the
previously best published results

» Limitations with respect to the physics-based models

does not provide estimates of free energies of secondary
structures

cannot compute the partition function, base-pair binding
probabilities and centroid structures derived from them

learned parameter weights are currently not interpretable
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Q&A

» Thanks for listening
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