Rich Parameterization Improves RNA Structure Prediction

Shay Zakov, Yoav Goldberg, Michael Elhadad, Michal Ziv-Ukelson

Yakup Korkmaz

Outline

- Introduction
- Preliminaries and Problem Definition
- Feature Representations
- Learning Algorithm
- Experiments
- Conclusion

Introduction

- RNAs functionalities depend on its structural features
 - Number of known RNA structures is still limited
- Secondary structure or folding of RNA sequence: set of formed base-pairs (A,G,C,U)
 - tertiary structure: actual three dimensional molecule structure
- RNA folding: optimization problem, choosing the folding with the maximum score after giving a score for every possible folding of a RNA sequence
 - Standard scoring approach: sum of scores of local structural elements (basic: Nussinov&Jacobson, complex:Turner99 model)

Introduction

- The parameter values (i.e. scores of each local element) traditionally obtained from wet-lab experiments
 - fine-tuned parameter estimation based on machine-learning (ML) techniques possible using known RNA structures
- Today model parameterization remained fairly constant
 - Having few parameters corresponding score of one particular local configuration

Contribution: much richer parameterizations (≈70.000)

- models based on the structural elements defined by Turner99
- score of each structural element is composed of the sum of scores of many fine-grained local features

Introduction

Fig. 1. RNA secondary structure. The figure exemplifies a secondary structure of an RNA sequence. Consecutive bases in the sequence are connected with (short) black edges, where base-pairs appear as blue (longer) edges. The labels within the loops stand for loop types, where H denotes a hairpin, I denotes an internal-loop, M denotes a multi-loop, and X denotes an external-loop. Drawing was made using the

Preliminaries and Problem Definition

- Problem: given an RNA sequence x, find a folding ^y ∈ Y_x s.t. G(x, ^y) is maximal
 - index-pairs of the form (i, j), i < j</p>
 - sequence-folding pair (x, y), where x is an RNA sequence and y is the folding of x
 - scoring model G, function that assigns real-values to sequencefolding pairs (x, y)
- f_G: Folding prediction algorithm

 $\hat{y} = f_G(x) = \operatorname{argmax}_{y \in \mathcal{Y}_x} \{G(x, y)\}$

Preliminaries and Problem Definition

Linear model

$$G(x,y) = \sum_{\phi_i \in \Phi(x,y)} \phi_i \mathbf{w}_i = \Phi(x,y)^T \cdot \mathbf{w}$$

- Φ, the set of different features
- $\Phi(x, y)$ feature representation of (x, y)
 - ϕ_i corresponds to the ith feature in Φ .
- Each feature in Φ is associated with a score (or a weight), w
 - w_i is the weight of the ith feature in Φ

Feature Representations

- Two kinds of features (for examples, refer slide 5)
 - Binary features
 - occurrence values are always I, thus the scores of such occurrences are simply the corresponding feature weights
 - Example: hairpin_base_0=G_+I=C_-2=U (pos. 17 and 25 in slide 5)
 - unpaired-base of type G inside a hairpin at a sequence position i, while positions i + I and i - 2 contain bases of types C and U respectively
 - Real-valued features
 - set of real-valued length features
 - Example: intervals of unpaired bases within hairpins (interval 16-20)
 - In this work, value of an occurrence of a length feature is log of the interval length

Learning Algorithm

• Goal of the learning algorithm:

- find a set of parameter values w such that the expected cost over unseen sequences x and their true foldings y is minimal
- Updating weight vector, w

$$\mathbf{w}^{i} = \begin{cases} \mathbf{w}^{i-1}, & \rho(y, \hat{y}) = 0, \\ \mathbf{w}^{i-1} + \tau_{i} \Phi(x, y) - \tau_{i} \Phi(x, \hat{y}), & \text{otherwise,} \end{cases}$$

$$\tau_i = \min\left(1, \frac{\Phi(x, \hat{y})^T \cdot \mathbf{w}^{i-1} - \Phi(x, y)^T \cdot \mathbf{w}^{i-1} + \sqrt{\rho(y, \hat{y})}}{||\Phi(x, \hat{y}) - \Phi(x, y)||^2}\right)$$

- Decrease the weights of features appearing only in the predicted structure, and
- increase the weights of features appearing only in the correct structure

Data set: (S-Full) is based on the RNA-Strand dataset

- contains known RNA secondary structures for a diverse set of RNA families across various organisms.
- Models: St^{med}Co^{med}, St^{high}Co^{med}, St^{med}Co^{high} and St^{high}Co^{high}
 - basic model enriched with varying amounts of structural (St) and contextual (Co) information
 - Also baseline model (Baseline) which includes a trivial amount of contextual information
- Measures: sensitivity, positive predictive value (PPV), and
 F₁-measure

Performance on S-AlgTrain as a function of the number of training iterations

Performance of final models on the dev set S-AlgTest

Model	# Params	$\mathbf{Sens}(\%)$	$\mathbf{PPV}(\%)$	$\mathbf{F}_1(\%)$
Baseline	226	56.9	55.3	55.8
${\tt St}^{med}{\tt Co}^{med}$	4,054	69.1	66.3	67.4
${\tt St}^{high}{\tt Co}^{med}$	7,075	72.3	70.3	71.0
${\tt St}^{med}{\tt Co}^{high}$	37,846	81.4	80.0	80.5
${\tt St}^{high}{\tt Co}^{high}$	68,606	83.8	83.0	83.2

Effect of training set size on validation-set accuracies

F₁ scores (in %) of on the development set, grouped by RNA family

Familiy (#instances)	${\tt St}^{med}{\tt Co}^{med}$	${\tt St}^{high}{\tt Co}^{med}$	${\tt St}^{med}{\tt Co}^{high}$	${\tt St}^{high}{\tt Co}^{high}$	Turner99	LAM-CG
Hammerhead Ribozyme(12)	57.9	58.3	69.8	78.8	43.9	45.5
Group I Intron(11)	55.2	58.7	73.5	70.5	60.4	60.6
Cis-regulatory element(11)	45.9	46.1	81.8	85.2	61.1	61.2
Transfer Messenger RNA(70)	55.2	57.6	69.7	70.8	37.5	49.5
5S Ribosomal RNA(27)	89.2	90.9	94.1	93.9	68.9	79.8
Unknown(48)	93.9	94.1	95.7	94.8	91.14	92.2
Ribonuclease P RNA(72)	62.0	70.3	84.7	87.7	58.6	61.2
16S Ribosomal RNA(112)	57.9	65.4	81.0	86.3	55.2	62.3
Signal Recognition Particle RNA(62)	61.8	62.7	72.6	76.2	66.6	64.5
Transfer RNA(80)	91.8	94.2	92.2	92.8	60.7	79.5
23S Ribosomal RNA(28)	53.6	54.0	61.2	68.6	58.5	60.0
Other RNA(11)	65.9	66.4	71.8	73.5	61.1	62.2

Final results on the test set

Model	Desc	# Params	$\mathbf{F}_1(\%)$
Turner99+Partition	11	363	61.7
Turner99	11	363	60.0
Turner99 (no dangles)	[11]	315	56.5
‡ † BL-FR	21 Ch6	7,726	69.7
$\ddagger \dagger BL*$	[21] Ch4.2	363	67.9
‡ † BL (no dangles)	[21] Ch4.2	315	68.0
‡ † LAM-CG (CG*)	[21] Ch4.1	363	67.0
‡†DIM-CG	[21] Ch4.1	363	65.8
* † CG 1.1	19	363	64.0
\star CONTRAFold 2.0	18,20	714	68.8
$\ddagger \mathtt{St}^{med} \mathtt{Co}^{med}$		4040	69.2
$\ddagger \mathtt{St}^{high} \mathtt{Co}^{med}$		7150	72.8
$\ddagger \mathtt{St}^{med} \mathtt{Co}^{high}$		37866	80.4
$\ddagger \mathtt{St}^{high}\mathtt{Co}^{high}$		69,603	84.1

Conclusion

- Richer parameterizations is beneficial to ML-based RNA structure prediction
 - Best model yields an error reduction of 50% over the previously best published results
- Limitations with respect to the physics-based models
 - does not provide estimates of free energies of secondary structures
 - cannot compute the partition function, base-pair binding probabilities and centroid structures derived from them
 - learned parameter weights are currently not interpretable

Q&A

Thanks for listening