
CS681: Advanced Topics in

Computational Biology

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Compression

 1 – Reference based

 Coding/decoding rather than real compression

 Very high compression rate

 Fast to encode

 Slow to decode

 Needs a reference genome

 None, or poor quality for most species

 Use same version of reference genome in decompression

 Needs mapping (takes a long time)

 Unmapped reads should be treated separately

 Reads are mapped for other analyses anyway

 CRAMtools/SAMtools, SlimGene, DeeZ, etc.

 Lossy

CRAMtools / SAMtools
Post mapping; SAM format:

FCB01H4ABXX:6:2103:15210:113744 137 chr1 10001 0 90M = 10001 0

TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

TAACCCTAACCCCAACCCCAACCCCAACCC

HHHHHGEEEGHHHGGBFGGGHGHHBEE?GECHHFHG9FFGF<DBFGGG<GGGGGAFGG

GGAEDFEDADA#####################

X0:i:350 MD:Z:72T5T5T5 RG:Z:1 XG:i:0 AM:i:0 NM:i:3 SM:i:0 XM:i:3 XO:i:0

XT:A:R

Read name Flag Map
Map

quality

Read sequence

Read quality

edits

 Read name is unnecessary

 Flag tells you whether /1 or /2

 Map location and edit fields (CIGAR & MD) can be used to regenerate reads

 Don’t store quality if edit distance = 0; otherwise only keep the qualities of changed bases

CIGAR

Fritz et al. Genome Research, 2011

CRAMtools / SAMtools
Post mapping; SAM format:

FCB01H4ABXX:6:2103:15210:113744 137 chr1 10001 0 90M = 10001 0

TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

TAACCCTAACCCCAACCCCAACCCCAACCC

HHHHHGEEEGHHHGGBFGGGHGHHBEE?GECHHFHG9FFGF<DBFGGG<GGGGGAFGG

GGAEDFEDADA#####################

X0:i:350 MD:Z:72T5T5T5 RG:Z:1 XG:i:0 AM:i:0 NM:i:3 SM:i:0 XM:i:3 XO:i:0

XT:A:R

Read name Flag Map
Map

quality

Read sequence

Read quality

CIGAR

Fritz et al. Genome Research, 2011

Keep: 137 ; chr1:10001 ; 0 ; 90M; 72T5T5T5 ; (#,#,#)

Add a layer of Huffman encoding

CRAMtools: test case

 One human genome

 40X coverage

 134 GB gzipped = 479 GB raw text

 Mapped with BWA; >1 day with 30 CPUs

 SAM format converted to BAM file: 112 GB

 BAM to CRAM: 7.5 GB

 Decode CRAM to BAM: 33 GB (lossy!!!)

Compression

 2 – Reference free

 Less compression rate

 No need for reference, applicable to any dataset from

any species

 Slower to compress, faster to decompress

 Can be lossy or lossless

 Multipurpose compressors:

 gzip, bzip2, 7-zip, etc.

 Specialized FASTQ compressors

 SCALCE, ReCoil, G-SQZ, etc.

Reference-free compression

 Easy task (or gzip, etc.): Concatenate all

sequences, then run Lempel-Ziv algorithm

 Problem: Locality

Hach et al., unpublishedhttp://scalce.sourceforge.net

Lempel-Ziv Compression

a b b a a b b a a b a b b a a a a b a a b b a

0 1 1 0 2--- 4--- 2--- 6------- 5--- 5--- 7------- 3--- 0

Index Entry Index Entry

0 a 7 baa

1 b 8 aba

2 ab 9 abba

3 bb 10 aaa

4 ba 11 aab

5 aa 12 baab

6 abb 13 bba

Reordering improves locality

File Size: 250MB, 5Mil 51bp Bacterial Genome

Pre-

processing

Time (s) Gzip time Size (MB) Comp.

Factor

Boosting

- - 70 65 4 -

Mapping 180 21 20 12.5 3.25

Lexo.

Sorting

10 30 26 9.61 2.5

Cores* 10 21 21 11.9 3.1

* Idea behind SCALCE

Reordering example

Ref: AAAAAATGACGTCTCTCCTCCTTTTTTAAAACCT

Original Mapping Sorting Cores

CTTTTT AAAAAA AAAAAA AAAAAA

GATGAC TAATGA ATGACG TAAAAC

CCCCCT GATGAC CCCCCT CCCCCT

AAAAAA ATGACG CTTTTT CTTTTT

ATGACG CCCCCT GATGAC TAATGA

TAAAAC CTTTTT TAAAAC GATGAC

TAATGA TAAAAC TAATGA ATGACG

Cores: Locally Consistent Parsing

 any string from the alphabet of length 3c or more include at least

one such core string

 there are no more than three such core strings in any string of length

4c or less

 if two long substrings of a string are identical, then their core

substrings must be identical

LCP (Sahinalp STOC 1994, Sahinalp FOCS 1996) is a

combinatorial pattern matching technique that aims to

identify building blocks of strings. For any user-specified

integer c and with any alphabet, the LCP identifies core

substrings of length between c and 2c such that:

Increasing Locality

 Goal: Obtain a few core substrings for each

read so that two highly overlapping reads will

have common core substrings. We obtain a

set of core strings such that

 A long prefix of a core substring can not be a

suffix of another core substring (this assures that

two subsequent core substrings can not be too

close to each other).

 Each read includes at least one core substring.

Finding cores

 Trie data structure: finding all core substrings within a read would

require O(cr) time (r: read length, c: length of all core substrings in

that read).

 Improvement: Aho-Corasick dictionary matching algorithm using an

automaton. O(r+k), where k is the number of core substring

occurrences in each read.

 More improvement: Alphabet is small, and number of core

substrings is fixed; pre-process automaton to calculate bucket in

O(1) time, reduce total search time to O(r).

Find all “core substrings" in a given read and place it in a bucket which

has the maximum number of reads.

Trie data structure

P={potato, tattoo, theater, other}

Failure links
P={potato, tattoo, theater, other}

AHO-CORASICK

Slides from Charles Yan

Search in keyword trees

 Naïve threading in keyword trees

do not remember the partial

matches

 P={apple, appropos}

 T=appappropos

 When threading

 app is a partial match

 But naïve threading will go back to the

root and re-thread app

 Define failure links

Failure Link

v: a node in keyword tree K

L(v): the label on v, that is, the concatenation of characters

on the path from the root to v.

lp(v): the length of the longest proper suffix of string L(v) that

is a prefix of some pattern in P. Let this substring be a.

Lemma. There is a unique node in the keyword tree that is labeled

by string a. Let this node be nv. Note that nv can be the root.

The ordered pair (v, nv) is called a failure link.

Failure Link

P={potato, tattoo, theater, other}

v

nv
a

Failure Link

Failure link computation is O(n)

Failure Link

x x p o t a t t o o x x

i=3 k=8

w

nw

Failure Link

x x p o t a t t o o x x

i=k-lp(w)=8-3=5 k=8

w

nw

Failure Link

How to construct failure links for a keyword tree in a linear time?

Let d be the distance of a node (v) from the root r.

When d≤1, i.e., v is the root or v is one character away from r,

then nv=r.

Suppose nv has been computed for every node (v) with d ≤ k,

we are going to compute nv for every node with d=k+1.

v’: parent of v, then v’ is k characters from r, that is d=k

thus the failure link for v’ (nv’) has been computed.

x: the character on edge (v’, v)

Failure Link

v’

v

nv’

x

x

a’

a’

v’

v

nv’

x

x

a

a

nv=w

(1) If there is an edge (nv', w) out of nv' labeled with x, then

nv=w.

w

Failure Link

v’

v

nv’

nv

Failure Link

(2) If such an edge does not exist, examine nnv' to see if there

is an edge out of it labeled with x. Continue until the root.

v’

v

nv’

x

y

a’

a’

z

x wnnv’

v’

v

nv’

x

y

a’

a’

z

x wnnv’

b’

b’

b’
b’

b’

b’

Failure Link

(2) If such an edge does not exist, examine nnv' to see if there

is an edge out of it labeled with x. Continue until the root.

v’

v

nv’

x

y

a’

a’

z

x wnnv’

v’

v

nv’

x

y

a’

a’

z

x
nv=w

nnv’

b’

b’

b’
b’

b’

b’

Failure Link

v’

v

nnv’

nv’

nv

Failure Link

v’

v

nnv’

nv’

nv

30

Aho-Corasick Algorithm

Input: Pattern set P and text T

Output: all occurrences in T any pattern from P

Algorithm AC

l=1;

c=1;

w=root

Repeat

while there is an edge (w, w’) labeled with T(c)

if w’ is numbered by pattern i then

report that pi occurs in T starting at l;

w=w’; c++;

w=nw and l=c-lp(w);

Until c>m

Quality Score Transformation

 Sequence alphabet has 5 characters

(A,C,G,T,N); but quality string alphabet is larger,

thus compresses less

 Generate qualities with a smaller alphabet to improve

compression

 Expect some small noise in a normal run of

sequencing machine.

 Calculate the frequency of the alphabet and

reduce the noise by merging the local maxima

up to e% threshold.

(optional) Quality Score Transformation

Original and transformed quality scores for four random reads

that are chosen from NA18507 individual.

Test case

For more

