
CS681: Advanced Topics in 

Computational Biology 

Can Alkan 

EA224 

calkan@cs.bilkent.edu.tr 

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/ 

Week  10 Lecture 1 



RNA folding  

 Prediction of secondary structure of an RNA 

given its sequence 

 General problem is NP-hard due to “difficult” 

substructures, like pseudoknots 

 Most existing algorithms require too much 

memory (≥O(n2)), and run time (≥O(n3)) thus 

limited to smaller RNA sequences 



RNA Structural Levels 

 

Primary 

AAUCG...CUUCUUCCA 

Primary 

Secondary 
Tertiary 



RNA Secondary Structure 

Hairpin 

loop 

Junction (Multiloop) 

Bulge Loop 

Single-Stranded 

Interior Loop 

Stem 

Pseudoknot 



Predicting RNA secondary structure 

 Base pair maximization 

 Minimum free energy (most common) 

 Fold, Mfold (Zuker & Stiegler) 

 RNAfold (Hofacker) 

 Multiple sequence alignment 

 Use known structure of RNA with similar 

sequence 

 Covariance 

 Stochastic Context-Free Grammars 



DENSITYFOLD 

Alkan, Karakoç et al, RECOMB 2006 



Energy Density Landscape 

E.coli 5S rRNA  



mFold  RNAalifold rnaScf 

E.coli 5S rRNA predictions 



Densityfold (alteRNA) 

 Instead of finding minimum global free energy, find local minimum 

free energies 

 Emulate the folding process of RNA folding by aiming to keep locally 
stable substructures 

 Energy density seen by a basepair: the free energy of the “optimal 
substructure” normalized by distance 

 Energy density of an unpaired base: energy density of the nearest 
encapsulating basepair 

 Densityfold optimizes a linear combination of free energy and total 
energy density 

 For every potential basepair, compute the optimal contribution of the 
implied substructure 

 The optimization function is non linear 

 Hill climbing process for approximating the contributions of unpaired 
bases 



Densityfold energy types 

 eH(i,j,): free energy of a hairpin loop enclosed 

by the base pair S[i].S[j] 

 eS(i,j,): free energy of the base pair S[i].S[j] 

provided that it forms a stacking pair with 

S[i+1].S[j-1] 

 eBI(i,j,i’,j’): free energy of an internal loop or a 

bulge that starts with S[i].S[j] and ends with 

S[i’].S[j’] 

 



Densityfold energy types 

 eM(i,j,i1,j1,…,ik,jk): free energy of multibranch 

loop that starts with S[i].S[j] and branches out 

S[i1].S[j1], S[i2].S[j2], …, S[ik].S[jk] 

 eDA(j,j-1): free energy of an unpaired 

dangling base S[j] when S[j-1] forms a base 

pair with another base 

 

 

 



Densityfold energy tables 

 ED(j): minimum total free energy density of a 

secondary structure for substring S[1, j]. 

 E(j): free energy of the energy density minimized 

secondary structure for substring S[1, j]. 

 EDS(i, j): minimum total free energy density of a 

secondary structure for S[i, j], provided that 

S[i].S[j] is a base pair. 

 ES(i, j): free energy of the energy density 

minimized secondary structure for the substring 

S[i, j], provided that S[i].S[j] is a base pair. 



Densityfold energy tables 

 EDBI (i, j): minimum total free energy density of a 

secondary structure for S[i, j], provided that there is a 

bulge or an internal loop starting with base pair S[i].S[j]. 

 EBI (i, j): free energy of an energy density minimized 

structure for S[i, j], provided that a bulge or an internal 

loop starting with base pair S[i].S[j]. 

 EDM(i, j): minimum total free energy density of a 

secondary structure for S[i, j], such that there is a 

multibranch loop starting with base pair S[i].S[j]. 

 EM(i, j): free energy of an energy density minimized 

structure for S[i, j], provided there is a multibranch loop 

starting with base pair S[i].S[j]. 



Calculating energy tables 

 Similar calculations for other tables 

 O(nk+2) time and O(n2) space 



Linear combination of MFE and ED 

 Similar formulations for ELCBI and ELCM 

 O(n4) running time 

For any x ε {S,BI,M} let ELCx(i, j) = EDx(i, j) +   Ex(i, j). 

Optimize ELC(n) = ED(n) + E(n). 



Densityfold prediction: E.coli 5S rRNA 

Known Structure 
Densityfold 

Prediction 



CONTRAFOLD 



CONTRAfold 

Probabilistic RNA folding algorithm 

Problem: Given an RNA sequence, predict the most likely 

secondary structure 

AUCCCCGUAUCGAUC 

AAAAUCCAUGGGUAC 

CCUAGUGAAAGUGUA 

UAUACGUGCUCUGAU 

UCUUUACUGAGGAGU 

CAGUGAACGAACUGA 

Do et al, Bioinformatics, 2006 



CONTRAfold 

 CONTRAfold looks at features that indicate a good 

structure 

 C-G base pairings 

 A-U base pairings 

 Helices of length 5 

 Hairpin loops of size 9 

 Bulge loops of size 2 

 CG/GC Base-pair stacking 

interactions 

For example: 

Do et al, Bioinformatics, 2006 



)  ( exp 

Choosing a structure 

 Every feature fi is associated with a weight wi. 

structure sequence weight of 
Feature i 

# of occurrences 
of feature i,  
in structure y 
generated  
from sequence x 

 The probability of a structure y, given a 

sequence x, is determined by the following 

relationship: 

Do et al, Bioinformatics, 2006 



Choosing a structure 

 Considers all structures and finds optimal 

structure via dynamic programming in O(n3) 

 Added bonus: probability associated with each 

base 

Low 
confidence 
bases lighter 

High 
confidence 
bases darker 

Do et al, Bioinformatics, 2006 



Maximum Expected Accuracy 

For a candidate structure ŷ with true structure y 

ŷmea = argmax Ey [accuracy (ŷ, y)] 
ŷ 

M1,L = maxy Ey [accuracy (ŷmea, y)] 

Mi,j = max { 
qi   if i=j 

qi + Mi+1,j  if i<j 

qj + Mi,j-1  if i<j 

.2pij + Mi+1,j+1  if i+2<j 

Mi,k+Mk+1,j  if i≤k<j  

Do et al, Bioinformatics, 2006 



Sensitivity vs Specificity:  

Sensitivity =  
# correct base pairings 

# true base pairings 
Specificity =  

# correct base pairings 

# predicted base pairings 

 = 1 

 = 8 

 = 1024 

AUCCCCGUAUCGAUC 

AAAAUCCAUGGGUAC 

CCUAGUGAAAGUGUA 

UAUACGUGCUCUGAU 

UCUUUACUGAGGAGU 

CAGUGAACGAACUGA 

Do et al, Bioinformatics, 2006 



Learning to predict good structures 

 CONTRAfold trains on set of published examples of known 

RNA structures taken from a database called Rfam (RNA 

families) 

 CONTRAfold learns the relative value, or weight, of each of 

its features 

 CONTRAfold determines the weight for each feature that 

maximizes its performance on the training set.  

 A training set is a collection of known correct solutions that a 

program learns from. 

Do et al, Bioinformatics, 2006 



STOCHASTIC CONTEXT-FREE 

GRAMMARS 



SCFG 

 RNA folding can be represented as context-

free grammars 



unrestricted grammars 

context-sensitive grammars 

context-free grammars 

regular grammars 

(equivalent to finite automata & HMM’s) 

(equivalent to SCFG’s & pushdown automata) 

(equivalent to Turing machines & 

recursively enumerable sets) 

(equivalent to linear 

bounded automata) 

Chomsky hierarchy 

B. Majoros 



A context-free grammar is a generative model denoted by a 4-tuple: 

 

G = (V, , S, R)  

where: 

 

  is a terminal alphabet, (e.g., {a, c, g, t} ) 

 V is a nonterminal alphabet, (e.g., {A, B, C, D, E, ...} ) 

 S V is a special start symbol, and  

 R is a set of rewriting rules called productions. 

 

Productions in R are rules of the form: 

 

X →  

 

where X V, (V )* 

B. Majoros 

Context-free grammars 



The “context-freeness” is imposed by the requirement that 

the l.h.s of each production rule may contain only a single 

symbol, and that symbol must be a nonterminal: 

 

X →  

 

Thus, a CFG cannot specify context-sensitive rules such as: 

 

wXz → w z 

 

Context “freeness” 

B. Majoros 



Suppose a CFG G has generated a terminal string x *. A 

derivation S  *x denotes a possible for generating x.  

 

A derivation (or parse) consists of a series of applications of 

productions from R, beginning with the start symbol S and 

ending with the terminal string x: 
 

S  s1  s2  s3  L  x 

where  si (V )*.  

 

 

We’ll concentrate of leftmost derivations where the leftmost 

nonterminal is always replaced first. 

B. Majoros 

Derivations 



The advantage of CFG’s over HMM’s lies in their ability to model arbitrary runs of 

matching pairs of elements, such as matching pairs of parentheses: 

 

L((((((((L))))))))L 

 

When the number of matching pairs is unbounded, a finite-state model such as a DFA or 

an HMM is inadequate to enforce the constraint that all left elements must have a 

matching right element.  

 

In contrast, in a CFG we can use rules such as X→(X). A sample derivation using such a 

rule is: 

 

X  (X)  ((X))  (((X)))  ((((X))))  (((((X))))) 

 

An additional rule such as X→  is necessary to terminate the recursion. 

 

Context-free vs. regular 

B. Majoros 



A CFG for an RNA 

 RNA hairpin with 3 bp stem and a 4-base 

loop (GAAA or GCAA) 

S-> aXu | cXg | gXc | uXa 

X-> aYu | cYg | gYc | uYa 

Y-> aZu | cZg | gZc | uZa 

Z->gaaa | gcaa 

R. Shamir & R. Sharan 



Parse trees 

 A representation of a parse of a string by a CFG  

 Root – start nonterminal S  

 Leaves – terminal symbols in the given string  

 Internal nodes - nonterminals  

 The children of an internal node are the productions of 

that nonterminal (left-to-right order  

 

R. Shamir & R. Sharan 



A stochastic context-free grammar (SCFG) is a CFG plus a probability distribution on 

productions: 
 

G = (V, , S, R, Pp)  
 

where Pp : R a ¡, and probabilities are normalized at the level of each l.h.s. symbol X: 

[  Pp(X→ )=1 ] 
                                                              X V   X→  
 

Thus, we can compute the probability of a single derivation S *x by multiplying the 

probabilities for all productions used in the derivation: 
 

 i P(Xi→ i) 
 

We can sum over all possible (leftmost) derivations of a given string x to get the 

probability that G will generate x at random: 
 

P(x | G) =  P(S j
*x | G). 

                                                       j 

B. Majoros 

Stochastic CFG 



As an example, consider G=(VG, , S, RG, PG), for VG={S, L, N}, ={a,c,g,t}, and RG the set 

consisting of: 
S → a S t | t S a | c S g | g S c | L 

 
L → N N N N 

 
N → a | c | g | t 

 
Then the probability of the sequence acgtacgtacgt is given by: 
 

P(acgtacgtacgt) = 
 

P( S  aSt  acSgt  acgScgt  acgtSacgt  

acgtLacgt  acgtNNNNacgt  acgtaNNNacgt  

acgtacNNacgt  acgtacgNacgt  acgtacgtacgt) = 
 

0.2  0.2  0.2  0.2  0.2  1  0.25  0.25  0.25  0.25 =  1.25 10-6 

 

because this sequence has only one possible (leftmost) derivation under grammar G. 

(P=0.2) 
 

(P=1.0) 
 

(P=0.25) 

B. Majoros 

An example 



acuSag 

Structure using SFCG 

 Grammar rules with associated probabilities 

S  aSu | cSg | aS | uS | … | Su | SS | ε 
 P         .21    .15      .11    .08           .03    .22    .02 

S 
aS 
acSg 

acuSuag 
acugScuag 
acuguScuag 
acuguaScuag 
acuguauScuag 
acuguaucuag 

acuguaucuag 

.(((...).)) 

 Let’s generate a structure for the sequence 

acuuauuag 

acuguacuag 

.(((..).)) 

acugucuag 

.(((.).)) 

acugcuag 

.((().)) 

acuuag 

.((.)) 

acuag 

.(()) 

acg 

.() 

a 

. 

 We select the set of transformations that highest probability 

of generating the input sequence. This set gives us our 

structure. 



Non-CNF: 

 

S → a S t | t S a | c S g | g S c | L 

L → N N N N 

N → a | c | g | u 

 

CNF: 

 

S → A ST | T SA | C SG | G SC | N L1  

SA → S A 

ST → S T 

SC → S C 

SG → S G 

L1 → N L2 

L2 → N N 

N → a | c | g | u 

A → a 

C → c 

G → g 

T → u 

Chomsky Normal Form 
A CNF grammar is one in which all productions are of the form: 

X → Y Z 

or: 

X → a 

B. Majoros 



Two questions for a CFG: 

 

1) Can a grammar G derive string x? 

2) If so, what series of productions would be used during 

the derivation? (there may be multiple answers!) 

 

Additional questions for an SCFG: 

 

1) What is the probability that G derives string x? 

2) What is the most probable derivation of x via G? 
 

B. Majoros 

Parsing CFG 



Parsing CFG 

 CYK Algorithm (Cocke-Younger-Kasami) 

 Dynamic Programming method 

 Modified CYK for SCFG 

 “Inside algorithm” 

 Training similar to HMM 

 If parses are known for training data sequences, simply 

count the number of times for each production, calculate 

probabilities (labeled sequence training for HMM) 

 If parses are not known, apply an EM algorithm called 

“Inside-Outside” (“forward-backward” for HMM) 


