CS681: Advanced Topics in Computational Biology

Week 5 Lecture 1

Can Alkan EA224 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

SNP discovery with NGS data

SNP: single nucleotide polymorphism

- Change of one nucleotide to another with respect to the reference genome
- □ 3-4.5 million SNPs per person
- Database: dbSNP <u>http://www.ncbi.nlm.nih.gov/projects/SNP/</u>
- Input: sequence data and reference genome
- Output: set of SNPs and their genotypes (homozygous/heterozygous)
- Often there are errors, filtering required
- SNP discovery algorithms are based on statistical analysis
- Non-unique mappings are often discarded since they have low MAPQ values

Resequencing-based SNP discovery

genome reference sequence

Read mapping

Read alignment

GTT*ACT*GTCGTTGT*AA*TACTCC*A*	DEA	IGTCTTTCAGGG*TCTCC*ATAAAGAT
GTT*ACT*GTCGTTGT*AA*TACTCC*A*	CGA	FGTCTTTCAGGG*TCTCC*ATAAAGAT
*tt*act*gt <mark>aatggaatactcatgaagt</mark>	gtt	aagggeteaaaagaageeteeggeett
gii*Ali*btcbiibi*AA*IALilL*a*	cga	tgtLIIILAGGG*t <u>ctc</u> c*atAAAGat
GTT*ACT*GTCGTTGT*AA*TACTCC*A*	CGA	IGTCTTTCAGGG*TCTCC*ATAAAGAT
tgt*act*gaagttgc*aa*tactCc*a*	DgA	IGTetttcaGGG*TCTcc*aTAAAGAT
gtt act*gtcgttgt*aa tactcc*a	cga	tgtCTtTcaggg*Tctcc aTAAagat
GTT*a*t*gTCGTTGT*AA*TACTCC*A*	CAA	IĞTCTTTCAĞĞĞ*TCTCC*ATAAAĞAT
gtt*act*gTCGTTgttaa*tactccca*	cga	tgTCTttcaggg*TCtcccataaagat
gtt*act*gtcgttgt*aa*aactccca*	caa	tgtctttcaggg*tctcc*atAAagat
GII*HCt*gtcgtIGt*aa*tacIcc*a*	D-a CCA	LGTCTTTCHUGG*TCILL*HIAAABAI
ottwacewatcottGtwaawtaatccwaw	roa	Gtototoaggg*TCTCC*aTHHHOHT
GTt*actcg=cgttgt*aa*tacTcc*a*	caa	tgtctatCAGGG*TCTCC*ATAAAGAT
gtt*a=t*gtcgttgt*aa=tactccca*	caa	tgtCTttcaggggtctcc <mark>c</mark> ataaagat
Gtt*act*gTCGTTGt*aa*tatccc*a*	caa	LGTCTTTCAGGG*TCTCC*ATAAAGAT
	LGA	
SILVALIASICSICSIAHH*IHLICL*3*	JaH	iguetuteaggg*tetetet*HTaaa6HT

Paralog identification

TTETEOETOEOEOCOTTOEOOTTETOTTTTOOOTOTOOOETTTOTOOOOTOO
TTTGTGAGTAGACA*GATTAcaattctattTTaaatataAAG*ttTATAAaataaatac
acatacgagccggaagcataAAGtgntaaaGctggGGTgcctaaTGAGTGagctaactc
tttGtgagtagaca*gattacaattc=attttaa titaaag*_ttitiaaatiaatac
TTTGTGAGTAGACA*GATTACAATTCTATTTTAAATATAAAG*TTTATAAAATAAA
TTTGTGAGTAGACA*GAttACaattCTAttTTAAATATaaag*ttTataaaaTaaATAc
TTTGTGAGTAGACA*GATAAGAGCTCTATTTTAAAta-AAGT*TTTATAAAATAAATAC
TTTGTGAGTAGACA*GATTACAATTCTATTTTAAATATAAAG*TTTATAAAATAAA
TTTGTGAGTAGACA*GATTACAATTCTATTTTAAATATAAAG*TTTATAAAATAAA
TTTGTGAGTAGACA*GATTACAATTCTATTTTAAATATAAAG*TTTATAAAATAAA

SNP detection + inspection

Goal

Given aligned short reads to a reference genome, is a read position a SNP, PSV or error?

Reference TCTCCTCTTCCAGTGGCGACGGAACGACCCTGGAGCCAAGT

Challenges

- Sequencing errors
- Paralogous sequence variants (PSVs) due to repeats and duplications
- Misalignments
 - Indels vs SNPs, there might be more than one optimal trace path in the DP table
 - Short tandem repeats
 - Need to generate multiple sequence alignments (MSA) to correct

Need to realign

Indel scatter

Even when read mapper detects indels in individual reads successfully, they can be scattered around (due to additional mismatches in the read)

TAAATZ	aatggaaatttatttctcagagtactggaagctgggaatccaagatcaaaatgccagcagattctaagtctggtg+++++agggt+++++gcactctcgcttcataaatgggtctcttgccgcaaaaaaatctgtttgctcccccagattcatcaaa
<-	TGGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGG
<-	TGGAAATTTATTTCTCA <mark>A</mark> AGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGG
<-	GGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGGG
->	GGAAATTTATTCACAGAGTAATGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGCTTCTAAGTCTGCTG*****AGGG
->	CAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGGGTAGGGCGCACTCTCGCTTCATAAATGGGTCTCTTGC
->	ATTTCTCAGAGTACTGGAAGCTGGGACTCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGGGT*****AGGGTGC
<-	GTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGT******GCACTCTGGTG
<-	AATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGT******GCACTCTCGCTTCATAAATGGGTCTC
->	ATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGT******GCACTCTCGCTTCATAAATGGGTCTCTTGCCGCA
<-	GTCTGGTGAGGGTAGGGT*****GCACTCTCGCTTCATAAATGGGTCTCTTGCCGCAAAAAAATCTGTTTGCTCCCCAG
TAAATZ	AATGGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG+++++AGGGTGCACTCTTGCTCCTCGTTAAATGGGTCTCTTGCCGCAAAAAAATCTGTTTGCTCCTCCAGATTCATCAAA
<-	TGGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTTAAGTCTGGTGAGG
<-	TGGAAATTTATTTCTCAAAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGG
<-	GGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGG
->	GGAAATTTATTCACAGAGTAATGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGCTTCTAAGTCTGCTGAGGG
->	CAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGTAGGGCGCACTCTCTGCTTCATAAATGGGTCTCTTGC
->	ATTTCTCAGAGTACTGGAAGCTGGGACTCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGTAGGGTGGC
<-	GTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGTAGGGTGCACTCTCTGCT
<-	AATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGTAGGGTGCACTCTCTGCTTCATAAATGGGTCTC
->	ATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGTAGGGTGCACTCTCTGCTTCATAAATGGGTCTCTTGCCGCA
<-	GTCTGGTGAGGGFAGGGTGCACTCTCTGCTTCATAAATGGGTCTCTTGCCGCAAAAAAATCTGTTTGCTCCTCCAG

MSA for resequencing

- We have the reference and (approximate) placement
- Departures from the reference are small
- Generate alt reference as suggested by *each* non-matching read (Smith-Waterman)
- Test each non-matching read against each alt reference candidate
- Select alt reference consensus: best "home" for all non-matching reads
- Why is it MSA: look for improvement in *overall* placement score (sum across reads)
- Optimizations and constrains:
 - Expect two alleles
 - Expect a single indel
 - Downsample in regions of very deep coverage
 - Alignment has an indel: use that indel as an alt. ref candidate

SNP callers

- Genome Analysis Tool Kit (GATK; Broad Inst.)
- Samtools (Sanger Centre)
- PolyBayes (Boston College)
- SOAPsnp (BGI)
- VARiD (U. Toronto)

Base quality recalibration

- The quality values determined by sequencers are not optimal
- There might be sequencing errors with high quality score; or correct basecalls with low quality score
- Base quality recalibration: after mapping correct for base qualities using:
 - Known systematic errors
 - Reference alleles
 - Real variants (dbSNP, microarray results, etc.)
- Most sequencing platforms come with recalibration tools
- In addition, GATK & Picard have recalibration built in

Base quality recalibration

Slide from Ryan Poplin

Recalibration by machine cycle

Slide from Ryan Poplin

Recalibration by dinucleotide

Slide from Ryan Poplin

Base quality values for SNP calling

• base quality values help us decide if mismatches are true polymorphisms or sequencing errors

• accurate base qualities are crucial, especially in lower coverage

Slide from Gabor Marth

Priors for specific scenarios

strain 1	AACGTTAGCAT AACGTTAGCAT AACGTTAGCAT	individual 1	AACGTTAGCAT AACGTTAGCAT AACGTT C GCAT
strain 2	AACGTTCGCAT AACGTTCGCAT		AACGTTCGCAT AACGTTCGCAT
strain 3	AACGTTAGCAT AACGTTAGCAT AACGTTAGCAT	individual 2	AACGTTCGCAT AACGTTCGCAT AACGTTCGCAT
		individual 3	AACGTTAGCAT AACGTTAGCAT

Consensus sequence generation (genotyping)

SOAPsnp

- Bayesian model
 - □ T_i: genotype
 - D: data at a locus
 - S: total number of genotypes

$$P(T_i \mid D) = \frac{P(D \mid T_i)P(T_i)}{\sum_{x=1}^{S} P(D \mid T_x)P(T_x)}$$

Li et al, Genome Research, 2009

SOAPsnp priors: Haploid SNP rate = 0.001. Assuming ref allele is G Adenine C А 1/6x0.001 4/6x0.001 Cytosine **Transversions** Transitions Transitions

Ideally; Ti / Tv = 2.1

Li et al, Genome Research, 2009

SOAPsnp priors: Diploid

- Heterozygous SNP rate = 0.001
- Homozygous SNP rate = 0.0005
- Assuming ref allele is G

	Α	С	G	Т
А	3.33 x 10 ⁻⁴	1.11 x 10 ⁻⁷	6.67 x 10 ⁻⁴	1.11 x 10 ⁻⁷
С		8.33 x 10 ⁻⁵	1.67 x 10 ⁻⁴	2.78 x 10 ⁻⁸
G			0.9985	1.67 x 10 ⁻⁴
т				8.33 x 10 ⁻⁵

Derived from dbSNP

Li et al, Genome Research, 2009

SOAPsnp: Genotype Likelihood

$$P(D \mid T) = \prod_{k=1}^{k} d_k \mid T$$

 $P(d_k \mid T)$

- $= P(O_k, q_k, c_k \mid T)$
- $= P(O_k, c_k | q_k, T) P(q_k | T)$

T: genotype (GG/GA/AA) o: observed allele type q: quality score c: cycle

TCTCCTCTTCCAGTGGCGACGGAAC CTCCTCTCCAGTGGCGACGACAGAACG CTCTTCCAGTGGCGACGGAACGACC CTTCCAGTGGCGACGGAACGACCC CCAGTGGCGACTGAACGACCCTGGA CAGTGGCGACAGAACGACCCTGGAG

GATK SNP calling

$$P(G \mid D) = \frac{P(G)P(D \mid G)}{\sum_{j=1}^{n} (G_{j})P(D \mid G_{j})}$$

$$P(D \mid G) = \prod_{j=1}^{n} (\frac{P(D_{j} \mid H_{1})}{2} + \frac{P(D_{j} \mid H_{2})}{2}) \text{ where } G = H_{1}H_{2}$$

$$P(D_{j} \mid H) = P(D_{j} \mid b)$$

$$P(D_{j} \mid b) = -\begin{bmatrix} 1 - \varepsilon_{j} & D_{j} = b \\ \varepsilon_{j} & \text{otherwise} \end{bmatrix}$$

GATK genotype likelihoods

- Likelihood of data computed using pileup of bases and associated quality scores at given locus
- Only "good bases" are included: those satisfying minimum base quality, mapping read quality, pair mapping quality
- P(b | G) uses platform-specific confusion matrices
- L(G|D) is computed for all 10 genotypes

SNP calling artifacts

SNP calls are generally infested with false positives

- From systematic machine artifacts, mismapped reads, aligned indels/CNV
- Raw SNP calls might have between 5-20% FPs among novel calls
- Separating true variation from artifacts depends very much on the particulars of one's data and project goals
 - Whole genome deep coverage data, whole genome low-pass, hybrid capture, pooled PCR are have significantly different error models

Filtering

Hard filters based on

- Read depth (low and high coverage are suspect)
- Allele balance
- Mapping quality
- Base quality
- Number of reads with MAPQ=0 overlapping the call
- Strand bias
- SNP clusters in short windows

Filtering

- Statistical determination of filtering parameters:
 - Training data: dbSNP, HapMap, microarray experiments, other published results
 - Based on the distribution of values over the training data adjust cut off parameters depending on the sequence context
 - VQSR: Variant Quality Score Recalibration

Indicators of call set quality

- Number of variants
 - □ Europeans and Asians: ~3 million; Africans: ~4-4.5 million
- Transition/transversion ratio
 - Ideally Ti/Tv= 2.1
- Hardy Weinberg equilibrium
 - Allele and genotype frequencies in a population remain constant
 - □ For alleles A and a; freq(A)=p and freq(a)=q; p+q=1
 - If a population is in equilibrium then
 - freq(AA) = p^2
 - freq(aa) = q²
 - freq(Aa) = 2pq
- Presence in databases: dbSNP, HapMap, array data
- Visualization

Validation through visualization

NA19240, chr1:5,639,327-5,639,365

Repeat 51, family 5639195

Slide from Kiran Garimella

Pooled sequencing

- When sequence coverage is low, pool mapping of data from multiple samples (ideally from the same population) into a single file
- SNP calling is more challenging
 - Allele frequencies close to error rate
 - Track which read comes from which individual

NEXT: INDELS