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Indel discovery with NGS data 

 Indels: insertions and deletions < 50 bp. 

 ~0.5 million indels per person 

 Database:  dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/ 

 Input: sequence data and reference genome 

 Output: set of indels and their genotypes  

(homozygous/heterozygous) 

 Often there are errors, filtering required 

 Most indel detection methods are based on statistical 

analysis 

 Tools: GATK, Dindel, Pindel, SAMtools, SPLITREAD, 

PolyScan, VarScan, etc. 

http://www.ncbi.nlm.nih.gov/projects/SNP/


Challenges (reminder) 

 Sequencing errors 

 Paralogous sequence variants (PSVs) due to 

repeats and duplications 

 Misalignments 

 Indels vs SNPs, there might be more than one 

optimal trace path in the DP table 

 Short tandem repeats 

 Need to generate multiple sequence alignments 

(MSA) to correct 



Finding indels 

 Sequence aligners are often unable to perfectly 

map reads containing insertions or deletions 

(indels) 

 Indel‐containing reads can be either left unmapped or 

arranged in gapless alignments 

 Mismatches in a particular read can interfere with the 

gap, esp. in low‐complexity regions 

 Single‐read alignments are “correct” in a sense that 

they do provide the best guess given the limited 

information and constraints. 

Slide from Andrey Sivachenko 



Need to realign 

Slide from Andrey Sivachenko 



After MSA 

Slide from Andrey Sivachenko 



Left alignment of indels 

 If there is a short repeat, there might be more than one 

alternative alignments of indels 

 Common practice is to select the “left aligned” version 

CGTATGATCTAGCGCGCTAGCTAGCTAGC 

CGTATGATCTA -  - GCGCTAGCTAGCTAGC 

CGTATGATCTAGCGCGCTAGCTAGCTAGC 

CGTATGATCTAGC -  - GCTAGCTAGCTAGC 

CGTATGATCTAGCGCGCTAGCTAGCTAGC 

CGTATGATCTAGCGC -  -TAGCTAGCTAGC 

Left  

aligned 



GATK indel calling 
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 Haplotypes are discovered from indels in the reads 

 Diploid genotypes G for all haplotype HiHj combinations 

 For each haplotype Hi, calculate likelihood of reads Dj over all 

possible alignments π 

 Sum computed by an HMM using haplotype, bases and quality 

scores 

Slide from Mark Depristo 



Dindel 

 Statistical methods that GATK indel caller is 

based on 

 Candidate indels are collected from regions 

with reads with mismatches & indels 

Albers et al. Genome Research, 2011 



Dindel main steps 

 Identify the set of reads {Ri} to be realigned. 

 Reads that overlap with 120 bp windows around the candidates 

 Generate the set of candidate haplotypes {Hj}. 

 Same 120 bp windows 

 Compute the maximum likelihood Pmax(Ri | Hj) and maximum-

likelihood alignment of each read Ri given each candidate haplotype 

Hj using the probabilistic realignment model. 

 Estimate haplotype frequencies from the read-haplotype likelihoods 

Pmax(Ri | Hj) and the prior probability of each candidate haplotype. 

 Estimate quality scores for the candidate indels and other sequence 

variants. 

 

Albers et al. Genome Research, 2011 



Dindel candidate haplotypes 

Albers et al. Genome Research, 2011 



Probabilistic realignment 

Pmax(Ri | Hj), the probability of observing the read Ri given that the true underlying 

haplotype sequence from which it was sequenced is given by Hj. 

 

 

Aligment done using an HMM 
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Albers et al. Genome Research, 2011 



Dindel haplotype inference 

Albers et al. Genome Research, 2011 



SPLITREAD 



Mapping Strategy 

 mrsFAST is used for all mappings. 

 Hamming Distance 

 Substitution Only/ No Insertions and Deletions. 

 All possible mappings of the reads. 

 Input:  FASTQ files/ Paired-end data 

 Target: Reference genome 

 If exome sequencing is analyzed, use only Coding Regions based on 
RefSeq and CCDS and 300bp flanking regions + Processed pseusogenes 

 Consensus repeat sequences are combined into an artificial chromosome 
chrN. 

 Can be used for both indel and structural variation discovery 

 High sequence coverage needed 

Karakoc et al., Nature Methods, 2011 



SPLITREAD 

 Map all reads. 

 Paired-end reads are paired based on the distribution of the insert size. 

 Unmapped reads for Single/One end anchored(OEA) reads for 

paired-end 

 Split into half reads and form paired-end reads with 0 expected insert 

size. 

 Map the split reads. 

 All possible mappings are reported. 

 Cluster the mappings based on the mapping of split reads. 

 For each perfect split region create a cluster. 

 An OEA mapping around the split region is added to a cluster if it does 

not contradict the perfect split. 

 Each cluster implies an INDEL event. 

Karakoc et al., Nature Methods, 2011 



SPLITREAD (cont) 

 Select the approximately optimal set of events 

with maximum likelihood. 

 Set-cover (greedy method) is used for approximation. 

 Minimum number of events with maximum number of 

perfect and unbalanced events. 

 Transchromosomal events -> ALU/L1/SVA 

insertions. 

 Remaining unbalanced splits -> Large 

insertions. 

 

Karakoc et al., Nature Methods, 2011 



Split Read - Deletion Split Read - Deletion 

 

Karakoc et al., Nature Methods, 2011 



Split Read - Insertion Split Read - Insertion 

Karakoc et al., Nature Methods, 2011 



Split Read – Inversion/duplication 

Karakoc et al., Nature Methods, 2011 



Split Reads for detecting Inversions 

• Strong signature at the breakpoints of the Inversions based  

on directions  
• Validation from both directions. 

• Repeat content at the breakpoint defines the specificity. 

• [End of Split1 – Start of Split2] defines the inversion. 

 

Karakoc et al., Nature Methods, 2011 



Split Reads for detecting Tandem 

Duplications 

• Signature at the breakpoints of Tandem duplication based on  

direction and mapping position. 
• Validation from both directions and within the duplicated region. 

• Repeat content at the breakpoint defines the specificity. 

• Non-template duplications are not clear. 

• [End of Split1 – Start of Split2] defines the tandem duplication. 
 

Karakoc et al., Nature Methods, 2011 



Split Read for detecting Duplications 

• Validation from both directions and within the duplicated region. 

• Mobile element insertions/transchromosomal events are classified  

as duplications  

• The size of the insertions can be detected unlike large novel insertions. 

Karakoc et al., Nature Methods, 2011 



Clustering 

 Each perfect split defined a cluster region. 

 Unbalanced splits around the cluster are inserted to the cluster. 

 Split reads can map to other regions of the genome. 

 Perfect/Unbalanced splits can be a member of multiple clusters. 

 Redundancy and unreliable support value. 

 Each cluster can be represented as a set with a number of members. 

 1 perfect split / 3 unbalanced split / 4 total splits    

Karakoc et al., Nature Methods, 2011 



Detecting correct clusters 

 Problem can be represented as set cover problem. 

 Find the minimum number of clusters such that union of them 
will represent all splits. 

 Greedy approach 

 Select the cluster with the maximum elements and report it as an 
event. 

 Remove all splits that are a member of this cluster from the 
remaining clusters. 

 Repeat the above procedure until all splits are removed. 

 Logarithmic approximation to optimal. 

 Cluster remaining unbalanced splits that does not belong to 
any cluster in a similar fashion. 

 They can indicate large insertions and deletions without perfect 
split support. 

Karakoc et al., Nature Methods, 2011 



Large Insertions 

• There are no perfect splits for large insertions. 

• The other end of the split is in insertion. 

• Unbalanced splits around the insertion site. 

• After the initial INDEL/SV selection using balanced splits 

• Cluster the remaining unbalanced splits. (within 15bp)  

• The content of the Large Insertion can not be identified without 

 assembly. 

 
Karakoc et al., Nature Methods, 2011 



Alu/L1 Insertions Alu/L1 Insertions 

“Transchromosomal” events since the repeat consensus sequences 

are treated as separate chromosomes 

Possible Alu/L1/SVA insertions 

One end anchored reads 

Novel insertions 

Deletions/Insertions with no perfect split support. 

“Transchromosomal” events since the repeat consensus sequences 

are treated as separate chromosomes 

Possible Alu/L1/SVA insertions 

One end anchored reads 

Novel insertions 

Deletions/Insertions with no perfect split support. 

Karakoc et al., Nature Methods, 2011 



BAM Files BAM Files FASTQ Files FASTQ Files 

Mapping 

One End 

Reads 

One End 

Anchored 

Reads 

Split Read Split Read 

Mapping 

mrsFAST 

No insertions/deletions 

All possible mappings 

Clustering 

All Reads / OEA +INDEL Reads 

Maximum 

Parsimony 

Maximum 

Parsimony 

Alu/L1/SVA 

Insertions + 

Large Insertions Minimum number of events 

(Deletions + small insertions) 

 with maximum total support 

Using remaining  

unbalanced 

reads 

Overview of SPLITREAD  

Karakoc et al., Nature Methods, 2011 



SPLITREAD  

 SPLITREAD  detects 
 All deletions ranging from 1bp up to 10Mbp. 

 Small insertions that are less than read length. 

 Large insertion sites for insertions larger than read 
length. 

 Polymorphic Processed Pseudogenes. 

 Mobile element insertions/deletions. 

 SPLITREAD can detect 
 Inversions. 

 Tandem duplications. 

 Translocations: 
 Interspersed duplications. 

 

Karakoc et al., Nature Methods, 2011 



SPLITREAD 

 Better for exome sequencing. 

 40 CPU  - 25-50min per exome.  

 Slow for the whole genome data. 

 Using coding regions + Processed pseudogenes 

in the reference as reference 

 Faster mappings. 

 Reduced specificity for paralogous regions.  

 Unmasked reference 

 Large output files. (50GB per sample for exome seq.) 

 Unpredictable memory usage. 

 Karakoc et al., Nature Methods, 2011 



Processed Pseudogenes 

• Processed pseudogenes look like intron deletions with precise breakpoints 

Karakoc et al., Nature Methods, 2011 



HAPLOTYPE PHASING 



Haplotype 

 “Haploid Genotype”: a combination of alleles at multiple loci that are 

transmitted together on the same chromosome  

 



Haplotype resolution 

 Variation discovery methods do not directly tell which 

copy of a chromosome a variant is located 

 For heterozygous variants, it gets messy: 

Chromosome 1,  #1 

Chromosome 1,  #2 

Discovered variants in 

Chromosome 1 

Haplotype resolution or haplotype phasing:  

finding which groups of variants “go together” 



Haplotypes and genotypes (1) 
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Slide from Andrew Morris 



Haplotypes and genotypes (1) 
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Slide from Andrew Morris 



Haplotypes and genotypes (1) 
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Slide from Andrew Morris 



Haplotypes and genotypes (1) 
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Slide from Andrew Morris 



Haplotypes and genotypes (2) 

 Individuals that are homozygous at every 

locus, or heterozygous at just one locus can 

be resolved. 

 Individuals that are heterozygous at k loci are 

consistent with 2k-1 configurations of 

haplotypes. 

Slide from Andrew Morris 



Why do we need haplotypes? 

 Correlation between alleles at closely linked 
locations 

 Fine-scale mapping studies. 

 Association studies with multiple markers in 
candidate genes. 

 Investigating patterns of linkage 
disequilibrium (LD) across genomic regions. 

 Inferring population histories. 

Slide from Andrew Morris 



Simplex family data (1) 

 

00 01 00 11          x          01 11 01 01 

(M)                                    (F) 

 

00 01 01 01 

 

Slide from Andrew Morris 



Simplex family data (1) 

 

00 01 00 11          x          01 11 01 01 

(M)                                    (F) 

 

00 01 01 01 

 

Slide from Andrew Morris 



Simplex family data (1) 

 

00 01 00 11          x          01 11 01 01 

(M)                                    (F) 

 

00 01 01 01 

 

Inferred haplotypes: 0001 / 0110 

 

Slide from Andrew Morris 



Simplex family data (2) 

 

00 01 00 01          x          01 01 00 01 

(M)                                    (F) 

 

00 01 00 01 

 

 Cannot be fully resolved… 

 

Slide from Andrew Morris 



Pedigree data (1) 

                   11 01 11 01 11  x  00 00 11 11 11 

 

 

                 01 01 11 11 11  x  01 00 00 01 00 

 

 

                   01 01 01 01 01     11 01 01 01 01     00 00 01 11 01 

Slide from Andrew Morris 



Pedigree data (1) 

Slide from Andrew Morris 

     11 01 11 01 11  x  00 00 11 11 11 

 

 

01 01 11 11 11  x  01 00 00 01 00 

 

 

01 01 01 01 01     11 01 01 01 01     00 00 01 11 01 



Pedigree data (1) 

                   11111 / 10101   x   00111 / 00111 

 

 

               11111 / 00111   x   00010 / 10000 

 

 

 

                11111 / 00000      11111 / 10000      00111 / 00010 

Slide from Andrew Morris 



Pedigree data (2) 

 Many combinations of haplotypes may be 

consistent with pedigree genotype data. 

 Complex computational problem. 

 Need to make assumptions about 

recombination. 

 SIMWALK and MERLIN. 

Slide from Andrew Morris 



Statistical approaches to reconstruct haplotypes in 

unrelated individuals 

 Parsimony methods: Clark’s algorithm. 

 Likelihood methods: E-M algorithm. 

 Bayesian methods: PHASE algorithm. 

 

 Aims: reconstruct haplotypes and/or estimate 

population frequencies. 

Slide from Andrew Morris 



Clark’s algorithm (1) 

 Reconstruct haplotypes in unresolved 

individuals via parsimony. 

 Minimise number of haplotypes observed in 

sample. 

 Microsatellite or SNP genotypes. 

Slide from Andrew Morris 



Clark’s algorithm (2) 

1. Search for resolved individuals, and record all 
recovered haplotypes. 

2. Compare each unresolved individual with list of 
recovered haplotypes. 

3. If a recovered haplotype is identified, individual is 
resolved. 

4. Complimentary haplotype added to list of 
recovered haplotypes. 

5. Repeat 2-4 until all individuals are resolved or no 
more haplotypes can be recovered. 
 

Slide from Andrew Morris 



Example 

(A) 00 01 01 00 

(B) 00 00 00 00 

(C) 00 01 00 00 

(D) 01 11 01 11 

(E) 00 11 01 01 

(F) 01 11 11 00 

(G) 00 01 11 01 

(H) 00 01 01 11 

(I)  00 00 00 00 

(J)  00 00 00 11 

 

Slide from Andrew Morris 



Example 

(A) 00 01 01 00 

(B) 00 00 00 00 

(C) 00 01 00 00 

(D) 01 11 01 11 

(E) 00 11 01 01 

(F) 01 11 11 00 

(G) 00 01 11 01 

(H) 00 01 01 11 

(I)  00 00 00 00 

(J)  00 00 00 11 

 

 

 

Slide from Andrew Morris 



Example 

(A) 00 01 01 00 

(B) 0000 / 0000 

(C) 0000 / 0100 

(D) 01 11 01 11 

(E) 00 11 01 01 

(F) 0110 / 1110 

(G) 00 01 11 01 

(H) 00 01 01 11 

(I)  0000 / 0000 

(J)  0001 / 0001 

 

 Recovered haplotypes: 

 

  0000 

  0100 

  0110 

  1110 

  0001 

 

Slide from Andrew Morris 



Example 

(A) 00 01 01 00 

(B) 0000 / 0000 

(C) 0000 / 0100 

(D) 01 11 01 11 

(E) 00 11 01 01 

(F) 0110 / 1110 

(G) 00 01 11 01 

(H) 00 01 01 11 

(I)  0000 / 0000 

(J)  0001 / 0001 

 

 Recovered haplotypes: 

 

  0000 

  0100 

  0110 

  1110 

  0001 

 

Slide from Andrew Morris 



Example 

(A) 0000 / 0110 

(B) 0000 / 0000 

(C) 0000 / 0100 

(D) 01 11 01 11 

(E) 00 11 01 01 

(F) 0110 / 1110 

(G) 00 01 11 01 

(H) 00 01 01 11 

(I)  0000 / 0000 

(J)  0001 / 0001 

 

 Recovered haplotypes: 

 

  0000 0111 

  0100 

  0110 

  1110 

  0001 

 

Slide from Andrew Morris 



Example 

(A) 0000 / 0110 

(B) 0000 / 0000 

(C) 0000 / 0100 

(D) 01 11 01 11 

(E) 0100 / 0111 

(F) 0110 / 1110 

(G) 00 01 11 01 

(H) 00 01 01 11 

(I)  0000 / 0000 

(J)  0001 / 0001 

 

 Recovered haplotypes: 

 

  0000 0111 

  0100 0011 

  0110 

  1110 

  0001 

 

Slide from Andrew Morris 



Example 

(A) 0000 / 0110 

(B) 0000 / 0000 

(C) 0000 / 0100 

(D) 0111 / 1101 

(E) 0100 / 0111 

(F) 0110 / 1110 

(G) 0110 / 0011 

(H) 0001 / 0111 

(I)  0000 / 0000 

(J)  0001 / 0001 

 

 Recovered haplotypes: 

 

  0000 0111 

  0100 0011 

  0110 1101 

  1110 

  0001 

 

Slide from Andrew Morris 



Example: problem… 

(A) 0000 / 0110 

(B) 0000 / 0000 

(C) 0000 / 0100 

(D) 01 11 01 11 

(E) 0100 / 0111 

(F) 0110 / 1110 

(G) 00 01 11 01 

(H) 00 01 01 11 

(I)  0000 / 0000 

(J)  0001 / 0001 

 

 Recovered haplotypes: 

 

  0000 0111 

  0100 0011 

  0110 

  1110 

  0001 

 

Slide from Andrew Morris 



Example: problem… 

(A) 0000 / 0110 

(B) 0000 / 0000 

(C) 0000 / 0100 

(D) 01 11 01 11 

(E) 0100 / 0111 

(F) 0110 / 1110 

(G) 00 01 11 01 

(H) 00 01 01 11 

(I)  0000 / 0000 

(J)  0001 / 0001 

 

 Recovered haplotypes: 

 

  0000 0111 

  0100 0010 

  0110 

  1110 

  0001 

 

Slide from Andrew Morris 



Clark’s algorithm: problems 

 Multiple solutions: try many different 

orderings of individuals. 

 No starting point for algorithm. 

 Algorithm may leave many unresolved 

individuals. 

 How to deal with missing data? 

Slide from Andrew Morris 



E-M algorithm (1) 

 Maximum likelihood method for population 

haplotype frequency estimation. 

 Allows for the fact that unresolved genotypes 

could be constructed from many different 

haplotype configurations. 

 Microsatellite or SNP genotypes. 

Slide from Andrew Morris 



E-M algorithm (2) 

 Observed sample of N individuals with 

genotypes, G. 

 Unobserved population haplotype 

frequencies, h. 

 Unobserved configurations, H, consisting of a 

complimentary haplotype pairs Hi = {Hi1,Hi2}.  

 

Slide from Andrew Morris 



E-M algorithm (3) 

 Likelihood: 

 

       f(G|h) = ∏k f(Gk|h) 

       = ∏k ∑i f(Gk|Hi) f(Hi|h) 

 

 where f(Hi|h) = f(Hi1|h) f(Hi2|h) under Hardy-

Weinberg equilibrium.  

 

Slide from Andrew Morris 



E-M algorithm (4) 

 Numerical algorithm used to obtain maximum 

likelihood estimates of h. 

 Initial set of haplotype frequencies h(0). 

 Haplotype frequencies h(t) at iteration t updated from 

frequencies at iteration t-1 using Expectation and 

Maximisation steps.  

 Continue until h(t) has converged. 

Slide from Andrew Morris 



E-M algorithm: comments 

 Can handle missing data. 

 For many loci, the number of possible 
haplotypes is large, so population 
frequencies are difficult to estimate: re-
parameterisation. 

 Does not provide reconstructed haplotype 
configuration for unresolved individuals: can 
use “maximum likelihood” configuration.  

 

Slide from Andrew Morris 



PHASE algorithm (1) 

 Treats haplotype configuration for each 
unresolved individual as an unobserved 
random quantity. 

 Evaluate the conditional distribution, given a 
sample of unresolved genotype data. 

 Microsatellite or SNP genotypes. 

 Reconstruction and population haplotype 
frequency estimation. 

 

Slide from Andrew Morris 



PHASE algorithm (2) 

 Bayesian framework: goal is to approximate posterior 
distribution of haplotype configurations f(H|G). 

 Implements Markov chain Monte Carlo (MCMC) methods 
to sample from f(H|G): Gibbs sampling.  

 Start at random configuration. 

 Repeatedly select unresolved individuals at random, and 
sample from their possible haplotype configurations, 
assuming all other individuals to be correctly resolved. 

Slide from Andrew Morris 



PHASE algorithm: comments 

 Allows for uncertainty in haplotype reconstruction in 

Bayesian framework. 

 Can handle missing data. 

 Coalescent process does not explicitly allow for 

recombination, but performs well even when cross-

over events occur (up to ~0.1cM). 

 Up to 50% more efficient than Clark’s algorithm or the 

E-M algorithm. 

 

Slide from Andrew Morris 



PHASE algorithm: output 

 “Best” reconstruction output for each individual. 

 Uncertainty in reconstruction indicated by system of brackets: 

 [] inferred missing genotype uncertain with posterior probability less 
than specified threshold; 

 () inferred phase assignment uncertain with posterior probability less 
than specified threshold. 

 

[0] [(1)] 0 0 1 (0) 

[0] [(0)] 1 0 1 (1) 

Slide from Andrew Morris 



PHASE algorithm: interpretation 

 “Best” reconstruction not necessarily correct. 

 Uncertain haplotype configurations should be 

investigated further. 

 Effective targeting of additional genotyping 

costs. 

Slide from Andrew Morris 



Other Bayesian MCMC algorithms 

 HAPLOTYPER 
 Prior model for haplotype frequencies given by Dirichelet 

distribution. 

 Deals with large number of SNPs by partition ligation. 

 Outputs “best” reconstruction with uncertainty measured by 
posterior probability. 

 HAPMCMC 
 Log-linear prior model for haplotype frequencies incorporating 

interactions corresponding to first order LD between SNPs. 

 Designed specifically for investigating LD across small 
genomic regions. 

Slide from Andrew Morris 



Haplotype phasing with PE sequences 

Chromosome 1,  #1 

Chromosome 1,  #2 

PE sequences are from the same molecule, thus same haplotype 

 Build initial shared haplotypes from PE reads 

 Assemble shared haplotypes to get larger phased blocks 



Fragment conflict graph 

Two fragments conflict if they cover a common SNP with different alleles 

Halldorsson et al., PSB 2011 



Pooled clone sequencing 

 Instead of short paired-ends, use fosmids (40 

kb) 

 Build fosmid library 

 Dilute the concentration of the library to cover the 

genome ~5X 

 Merge ~5000 fosmids in a pool 

 Total 114 pools 

 Sequence pools & separate fosmids in silico 

Kitzman et al., Nature Biotechnology, 2011 



Pooled clone sequencing 

•Each fosmid represents one haplotype 

•Resolve in ~40 kb blocks 

•Extend blocks by overlapping fosmids in 

different pools 


