CS681: Advanced Topics in Computational Biology

Week 6 Lecture 1

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Structural Variation Classes

Balanced rearrangements

Structural variation discovery with NGS data

- SVs: genomic alterations > 50 bp.
 - Databases:
 - dbVar: http://www.ncbi.nlm.nih.gov/dbvar/
 - DGV: http://projects.tcag.ca/variation/
- Input: sequence data and reference genome
- Output: set of SVs and their genotypes (homozygous/heterozygous)
- Often there are errors, filtering required
- SV detection methods can be based on statistical analysis or combinatorial optimization
- Tools: VariationHunter, BreakDancer, MoDIL, CommonLAW, Genome STRiP, Spanner, HYDRA, etc.

Challenges

- Most SVs are embedded within or around segmental duplications or long repeats
 - If you use unique mapping, you will lose sensitivity
 - Ambiguous mapping of reads will increase false positives
 - Reference genome is incomplete; missing portions are duplications which cause more problems in accurate detection
- Many SVs are complex; many rearrangements at the same site
- CNV discovery is heavily studied but still not perfect; detection of balanced rearrangements are still problematic

Duplications and CNV hotspots

Duplications: inter & intra

- 51,599 pairs of SDs
 - 18,559 pairs intrachromosomal
 - 32,740 pairs interchromosomal
- Non-redundant corresponds to 166 Mb (~5% of genome)

Genome-wide SV Discovery Approaches

Hybridization-based

- Iafrate et al., 2004, Sebat et al., 2004
- SNP microarrays:
 McCarroll et al., 2008,
 Cooper et al., 2008, Itsara et al., 2009
- Array CGH: Redon et al.
 2006, Conrad et al., 2010,
 Park et al., 2010,
 WTCCC, 2010

Single molecule analysis

Optical mapping:
 Teague et al., 2010

Sequencing-based

- Read-depth: Bailey et al, 2002
- Fosmid ESP: Tuzun et al.2005, Kidd et al. 2008
- Sanger sequencing: Mills et al., 2006
- Next-gen sequencing:
 Korbel et al. 2007, Yoon et al., 2009, Alkan et al., 2009, Hormozdiari et al. 2009, Chen et al. 2009,
 - 1000 GenomesProject

Detection diversity

Gains & Losses > 5 Kbp in the same 5 individuals

Affymetrix 6.0 SNP microarray McCarroll et al., 2008 (N = 236)

Sequence signatures of structural variation

- Read pair analysis
 - Deletions, small novel insertions, inversions, transposons
 - Size and breakpoint resolution dependent to insert size

- Read depth analysis
 - Deletions and duplications only
 - Relatively poor breakpoint resolution
- Split read analysis
 - Small novel insertions/deletions, and mobile element insertions
 - 1bp breakpoint resolution
- Local and de novo assembly
 - SV in unique segments
 - 1bp breakpoint resolution

SV by sequencing: first algorithms

Read Depth

Recent Segmental Duplications in the Human Genome

799

Jeffrey A. Bailey, ¹ Zhiping Gu, ² Royden A. Clark, ¹ Knut Reinert, ² Rhea V. Samonte, ¹ Stuart Schwartz, ¹ Mark D. Adams, ² Eugene W. Myers, ² Peter W. Li, ² Evan E. Eichler ^{1*} Science, 2002

genetics

Ø

Read Pair Fine-sca

Fine-scale structural variation of the human genome

662

Eray Tuzun^{1,5}, Andrew J Sharp^{1,5}, Jeffrey A Bailey^{2,5}, Rajinder Kaul³, V Anne Morrison¹, Lisa M Pertz², Eric Haugen³, Hillary Hayden³, Donna Albertson⁴, Daniel Pinkel⁴, Maynard V Olson³ & Evan E Eichler¹

Nature Genetics, 2005

Split read

An initial map of insertion and deletion (INDEL) variation in the human genome

196

Ryan E. Mills,^{1,2} Christopher T. Luttig,¹ Christine E. Larkins,³ Adam Beauchamp,⁴ Circe Tsui,^{1,2} W. Stephen Pittard,^{2,5} and Scott E. Devine^{1,2,3,4,6}

Genome Research, 2006

All these first algorithms used Sanger sequence, but laid out the basic principles for NGS analysis

Read depth based algorithms

- Assume random (Poisson) distribution in read depth
- Multiple mapping:
 - WSSD (whole genome shotgun sequence detection)
- Unique mapping:
 - Low resolution: Campbell et al. Nat Genet 2008,
 Chiang et al. Nat Meth, 2009 (SegSeq)
 - High(er) resolution: CNVnator, EWT (RDXplorer)

Read depth analysis: WSSD

- Uses database of random reads to confirm duplicated nature of the sequence
 - increased # of copies => increased number of reads
 - decreased # of copies => decreased number of reads
- Compute depth-of-coverage in 5kb windows (sliding by 1kb); select regions with increased depth as duplications, regions with reduced depth as deletions (WSSD method)

Multiple vs. unique mapping

Modified from Chiang & McCarroll, Nat Biotech, 2009

Read depth - Copy number correlation

WSSD: next-gen

- NGS specific problems
 - Short reads: MegaBLAST is replaced by mrFAST / mrsFAST
 - Common repeats: all repeats need to be masked
 - GC % bias needs to be fixed
- Improvement
 - Absolute copy number detection in 1 kb nonoverlapping windows
 - Genotyping highly identical paralogs

Read depth distribution

- Read depth doesn't really follow Poisson distribution
 - Biases against high and low GC %

GC% correction: LOESS

GC% correction (modified LOESS)

$$k_{gc} = \mu_{total}/\mu_{gc}$$

$$d'_{gc} = d_{gc}k_{gc}$$

The version in SegSeq and CNVnator

GC% correction

Before GC correction

After GC correction

WSSD workflow

Sequence coverage and detection power

Differentiating Paralogous Genes

Alkan et al., Nature Genetics, 2009

Singly Unique Identifiers (SUNs)

Copy 1 ATACTAGGCATATAATATCCGACGATATACATATAGATGTTAG
Copy 2 ATGCTAGGCATGTAATATCCGACGATATACATATACATGTTAG
Copy 3 ATACTAGGCATATAACATCCGACGATATACATATACATGTTAG
Copy 4 ATGCTACGCATATAATATCCCACGATATACATATACATGTTAG
Copy 5 ATGCTACGCATATAATATCCGACGATATACATATACATGATAG
Copy 6 ATACTAGGCATGTAATATCCGACGATATAC-ATACATGTTAG

Event-Wise Testing (EWT)

- Unique mappings are used
- No masking
- Window size 100 bp
- Probabilistic analysis

Event-Wise Testing (EWT)

Read counts are converted to Z score:

$$z_i = (RC_i - \mu_i) / \sigma_i$$

- Upper and lower tail probabilities
 - $p_i^U = P(Z>z_i)$
 - $p_i^L = P(Z < z_i)$
- Unusual events for interval A, I = |A|; L number of windows in chromosome; FPR: false positive rate

$$\max\{p_i^U \mid i \in \} < \left(\frac{FPR}{L/l}\right)^1 \qquad \max\{p_i^L \mid i \in \} < \left(\frac{FPR}{L/l}\right)^1$$

Duplication

Deletion

CNVnator

- Unique mappings
- Mappings with low MAPQ are discarded
- Partitioning is based on mean-shift technique developed for image processing

CNVs with exome sequencing

- Exome sequencing: capture only coding exons from DNA and sequence
 - 1% of total genome
 - Good for protein coding variants but misses regulatory sequence, introns, etc.
- Whole genome sequencing generates random data, but exome does not
- Capture efficiency changes for every exon (n~200,000)
- CNVs from exons: ExomeCNV

Open problems (read depth)

- Deletions are the most studied, but still not perfect:
 - Many FPs and FNs
 - Breakpoint resolution is often poor
 - Different algorithms capture different CNVs
 - Overlap with other experimental methods is poor
- Duplications are studied in lesser detail
- Exome read depth analysis
 - Very poor results due to differences in capture efficiency

NEXT: READ PAIRS + SPLIT READS