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Epigenetics 

 Epigenetics: study of all meiotically and 

mitotically heritable changes in gene 

expression that are not coded in the DNA 

sequence itself 

 DNA methylation 

 RNA associated silencing 

 Histone modification 

Nature 2004;429:457-73 



Histones 

 Proteins in eukaryotic cells that package DNA 

into nucleosomes 

nucleosome 

histone 



Histone structure 



Histone modifications 

Lund and Lohuizen Genes Dev 2004 

A: acetylation 

M: methylation 

P: phosphorilation 

U: ubiquitylation 

S: SUMOylation 



Histone modifications 

• Gene activation correlated with H3-K9 acetylation  

• Gene silencing associated with H3-K9 methylation 



Histone Modifications and Human 

Diseases 

Coffin-Lowry syndrome is a rare genetic disorder characterized by 
mental retardation and abnormalities of the head and facial and 
other areas.  It is caused by mutations in the RSK2 gene (histone 
phosphorylation) and is inherited as an X-linked dominant genetic 
trait. Males are usually more severely affected than females. 

 

Rubinstein-Taybi syndrome is characterized by short stature, 
moderate to severe intellectual disability, distinctive facial features, 

and broad thumbs and first toes. It is caused by mutations in 

CREB-binding protein (histone acetylation) 

 



Detection of histone modifications 

 ChIP: chromatin immunoprecipitation 

 Similar to MeDIP assay 

 Proteins are used to enrich for DNA that are 

packaged by modified histones 

 Collect, then 

 ChIP-on-chip: analyze with microarray 

 ChIP-seq: sequence 



ChIP-chip 

Wong and Chang, Journal of Investigative Dermatology, 2005 



ChIP-seq 

Peter J Park, Nat Rev Genet, 2009 



ChIP-seq 

Peter J Park, Nat Rev Genet, 2009 



Peaks: ChIP-chip vs ChIP-seq 

Peter J Park, Nat Rev Genet, 2009 



Peaks: ChIP-seq 

Peter J Park, Nat Rev Genet, 2009 



Peak calling 

 Segmentation algorithms 

 HMMseg, etc. 

 Dynamic Bayesian Network based segmentation: 

 Segway (Hoffman et al., Nat Methods, 2012) 

 Poisson models and binomial distribution 

 PeakSeq (Rozowsky et al., Nat Biotech, 2009) 



RNA FOLDING 



RNA folding  

 Prediction of secondary structure of an RNA 

given its sequence 

 General problem is NP-hard due to “difficult” 

substructures, like pseudoknots 

 Most existing algorithms require too much 

memory (≥O(n2)), and run time (≥O(n3)) thus 

limited to smaller RNA sequences 



RNA Basics 

 RNA bases A,C,G,U 

 Canonical Base Pairs 

 A-U 

 G-C 

 G-U 

“wobble” pairing 

 Bases can only pair with 

one other base. 

 

 

http://www.bioalgorithms.info/  

2 Hydrogen Bonds 3 Hydrogen Bonds – more stable 

http://www.bioalgorithms.info/


RNA Structural Levels 

 

Primary 

AAUCG...CUUCUUCCA 

Primary 

Secondary 
Tertiary 



RNA Basics 

 transfer RNA (tRNA) 

 messenger RNA (mRNA) 

 ribosomal RNA (rRNA) 

 small interfering RNA (siRNA) 

 micro RNA (miRNA) 

 small nucleolar RNA (snoRNA) 

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/  

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/


RNA families 

 Rfam : General non-coding RNA database  

(most of the data is taken from specific 

databases) 

http://www.sanger.ac.uk/Software/Rfam/ 

Includes many families of non coding RNAs  and functional 

Motifs, as well as their alignement and their secondary structures 



RNA Secondary Structure 

Hairpin 

loop 

Junction (Multiloop) 

Bulge Loop 

Single-Stranded 

Interior Loop 

Stem 

Pseudoknot 



Example: 5S rRNA 

E. coli 5S 

120 bases 

T. thermophilus 5S 

120 bases 



Example: E. coli 16S rRNA 

1542 bases 



Example: E. coli 23S rRNA 

2904 bases 



Example: HIV 

9173 bases 

Watts et al., Nature, 2009 



Binary Tree Representation of RNA 

Secondary Structure 
 Representation of  RNA structure 

using Binary tree 

 Nodes represent 

 Base pair if two bases are shown 

 Loop if base and “gap” (dash) are 

shown 

 Pseudoknots still not represented 

 Tree does not permit varying 

sequences 

 Mismatches 

 Insertions & Deletions 

Images – Eddy et al. 



Circular Representation 

Images – David Mount 



Examples of known interactions of 

RNA secondary structural elements 

Pseudoknot 

Kissing hairpins 
Hairpin-bulge 

contact 

These patterns are 

excluded from the 

prediction schemes as 

their computation is too 

intensive. 



Predicting RNA secondary structure 

 Base pair maximization 

 Minimum free energy (most common) 

 Fold, Mfold (Zuker & Stiegler) 

 RNAfold (Hofacker) 

 Multiple sequence alignment 

 Use known structure of RNA with similar 

sequence 

 Covariance 

 Stochastic Context-Free Grammars 



Sequence Alignment as a method 

to determine structure 

 Bases pair in order to form backbones and 
determine the secondary structure 

 Aligning bases based on their ability to pair with 
each other gives an algorithmic approach to 
determining the optimal structure 

 

 



Simplifying Assumptions 

 RNA folds into one minimum free-energy 

structure.  

 There are no knots (base pairs never cross). 

 The energy of a particular base pair in a 

double stranded regions is sequence 

independent 

 Neighbors do not influence the energy. 

 Was solved by dynamic programming, Zuker 

and Stiegler 1981 

 

 



Base Pair Maximization 

U 

C 

C 

A G 

G 

A 

C 

Zuker (1981) Nucleic Acids Research 9(1) 133-149 



Base Pair Maximization – Dynamic 

Programming Algorithm 

 

Simple Example: 

Maximizing Base Pairing 

http://bioalgorithms.info 

S(i,j) is the folding of the subsequence of the RNA 

strand from index i to index j which results in the 

highest number of base pairs 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent 

of overall structure 

 Bifurcation adds extra 

dimension 

Initialize first two 

diagonal arrays to 0 
Fill in squares sweeping 

diagonally 

Images – Sean Eddy 

Bases cannot pair, 
similar 

to unmatched alignment 

S(i, j – 1) 

Bases can pair, similar 

to matched alignment 

S(i + 1, j) 

Dynamic Programming 

–  possible paths S(i + 1, j – 1) +1 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent 

of overall structure 

 Bifurcation adds extra 

dimension 

Initialize first two 

diagonal arrays to 0 
Fill in squares sweeping 

diagonally 

Images – Sean Eddy

Reminder: 

For all k 

 

S(i,k) + S(k + 1, j) 

k = 0 : Bifurcation 

max in this case 

 

S(i,k) + S(k + 1, j) 

Reminder: 

For all k 

 

S(i,k) + S(k + 1, j) 

Bases cannot pair, 
similar 

Bases can pair, similar 

to matched alignment 
Dynamic Programming 

–  possible paths 
Bifurcation – add values 

for all k 



Base Pair Maximization - Drawbacks 

 Base pair maximization will not necessarily 
lead to the most stable structure 

 May create structure with many interior loops or 
hairpins which are energetically unfavorable 

 Comparable to aligning sequences with 
scattered matches – not biologically 
reasonable 



Energy Minimization 

 Thermodynamic Stability 

 Estimated using experimental techniques 

 Theory : Most Stable is the Most likely 

 No Pseudoknots due to algorithm limitations 

 Uses Dynamic Programming alignment technique 

 Attempts to maximize the score taking into account 

thermodynamics 

 MFOLD and ViennaRNA 



Free energy model 

Free energy of a structure is the sum of all 

interactions energies 

Each interaction energy can be calculated thermodynamically  

Free Energy(E)  = E(CG)+E(CG)+….. 



Why is MFE secondary structure 

prediction hard? 

 MFE structure can be found by 
calculating free energy of all possible 
structures 
 

 BUT the number of potential structures 
grows exponentially with the number, n, 
of bases 



RNA folding with Dynamic programming  

(Zuker and Stiegler) 

 W(i,j): MFE structure of substrand from i to j 

i j 

W(i,j) 



RNA folding with dynamic programming 

 Assume a function W(i,j) which is the MFE for the sequence 
starting at i and ending at j (i<j) 

 

 

                             

 

 

 Define scores, for example base pair (CG) =-1 non-pair(CA)=1 
(we want a negative score )   

 Consider 4 possibilities: 

 i,j are a base pair, added to the structure for i+1..j-1 

 i is unpaired, added to the structure for i+1..j 

 j is unpaired, added to the structure for i..j-1 

 i,j are paired, but not to each other;  

 Choose the minimal energy 

i (i+1) 

 

W(i,j) 

(j-1) j 



Energy Minimization Results 

 Linear RNA strand folded back on itself to create secondary 
structure 

 Circularized representation uses this requirement 

 Arcs represent base pairing 

Images – David Mount 

 All loops must have at least 3 bases in them 
 Equivalent to having 3 base pairs between all arcs 

Exception: Location where the beginning and end of RNA come 

together in circularized representation 



Trouble with Pseudoknots 

 Pseudoknots cause a breakdown in the Dynamic 
Programming Algorithm. 

 In order to form a pseudoknot, checks must be made to 
ensure base is not already paired – this breaks down the 
recurrence relations 

Images – David Mount 



Sequence dependent free-energy  
Nearest Neighbor Model 

    U U 
 

C          G  

G          C  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

       

Energy is influenced by the previous base pair 

 (not by the base pairs further down). 



Sequence dependent free-energy 

values of the base pairs  
     U U 

 

C          G  

G          C  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

Example values: 

GC     GC     GC    GC 

AU     GC     CG    UA  

-2.3    -2.9    -3.4   -2.1 

These energies are estimated experimentally from small synthetic RNAs.  

 

 



Adding Complexity to Energy 

Calculations 
 Stacking energy - Assign negative energies to 

these between base pair regions. 

 Energy is influenced by the previous base pair (not by 

the base pairs further down). 

 These energies are estimated experimentally from 

small synthetic RNAs.  

 Positive energy - added for destabilizing regions 

such as bulges, loops, etc. 

 More than one structure can be predicted 



Mfold  

 Positive energy - added for destabilizing 

regions such as bulges, loops, etc. 

 More than one structure can be predicted 



Free energy computation 

       U  U 

A               A 

       G  C 

       G  C 

   A 

       G  C 

       U  A 

       A  U 

       C  G 

       A  U 

    A        3’ 

A 

5’ 

   -0.3 

-0.3 

-1.1 mismatch of hairpin 

-2.9 stacking 

+3.3 1nt bulge -2.9 stacking 

-1.8 stacking 

5’ dangling 

-0.9 stacking 

-1.8 stacking 

-2.1 stacking 

G= -4.6 KCAL/MOL 

+5.9 4 nt loop  



Mfold  

 Positive energy - added for destabilizing 

regions such as bulges, loops, etc. 

 More than one structure can be predicted 



Frey U H et al. Clin Cancer Res 2005;11:5071-5077 

©2005 by American Association for Cancer Research 

More than one structure can be predicted for the  

same RNA 
 



Energy Minimization Drawbacks 

 Compute only one optimal structure 

 Usual drawbacks of purely mathematical 

approaches 

 Similar difficulties in other algorithms 

 Protein structure 

 Exon finding 



RNA fold prediction based on 

Multiple Alignment 

Information from multiple sequence  alignment (MSA)  can 

help to predict the probability of positions i,j to be base-

paired. 

 

 

G  C  C  U  U  C  G  G  G  C 

G  A  C  U  U  C  G  G  U  C 

G  G  C  U  U  C  G  G  C  C 



Compensatory Substitutions 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 

G C 

5’ 

Mutations that maintain the secondary 

structure can help predict the fold 



RNA secondary structure can be revealed by 

identification of compensatory mutations  

G  C  C  U  U  C  G  G  G  C 

G  A  C  U  U  C  G  G  U  C 

G  G  C  U  U  C  G  G  C  C 

  U  C 

U       G 

C       G 

N       N’ 

G       C 



Insight from Multiple Alignment 

Information from multiple sequence  alignment 

(MSA)  can help to predict the 

probability of positions i,j to be base-paired. 

 

 Conservation – no additional information 

 Consistent mutations (GC GU) – support 

stem 

 Inconsistent mutations – does not support 

stem. 

 Compensatory mutations – support stem. 

 



RNAalifold 
 

 Predicts the consensus secondary 

structure for a set of aligned RNA 

sequences by using modified dynamic   

programming algorithm  that add 

alignment information to the standard 

energy model 

 Improvement in prediction accuracy 

 



Alternative Algorithms - Covariaton 

 Incorporates Similarity-based method 

 Evolution maintains sequences that are important 

 Change in sequence coincides to maintain 
structure through base pairs (Covariance) 
 Cross-species structure conservation example – tRNA 

 Manual and automated approaches have 
been used to identify covarying base pairs 

 Models for structure based on results 

 Ordered Tree Model 

 Stochastic Context Free Grammar  

 

Expect areas of base 

pairing in tRNA to be  

covarying between 

various species 

Base pairing creates  

same stable tRNA  

structure in organisms 

  

Mutation in one base 

yields pairing  

impossible and breaks 

down structure 

Covariation ensures 

ability to base pair is  

maintained and RNA 

structure is conserved 



Covariance Model 

 HMM which permits flexible alignment to an RNA structure –  

 emission and transition probabilities  

 Model trees based on finite number of states  

 Match states – sequence conforms to the model: 

 MATP – State in which bases are paired in the model and sequence 

 MATL & MATR – State in which either right or left bulges in the 
sequence and the model 

 Deletion – State in which there is deletion in the sequence when 
compared to the model 

 Insertion – State in which there is an insertion relative to model 

 Transitions have probabilities 

 Varying probability – Enter insertion, remain in current state, etc 

 Bifurcation – no probability, describes path 

 



Covariance Model (CM) Training 

Algorithm 
 S(i,j) = Score at indices i and j in RNA when aligned to the 

Covariance Model 

Independent frequency of seeing the  

symbols (A, C, G, T) in locations i or j  

depending on symbol. 

 Frequencies obtained by aligning model to “training data” – consists 

of sample sequences 

 Reflect values which optimize alignment of sequences to model 

Frequency of seeing the symbols  

(A, C, G, T) together in locations i and j  

depending on symbol. 



 Calculate the probability 
score of aligning RNA to CM 

 Three dimensional matrix – 
O(n³) 
 Align sequence to given 

subtrees in CM  

 For each subsequence 
calculate all possible states 

 Subtrees evolve from 
Bifurcations 
 For simplicity Left singlet is 

default 

Images – Eddy et al. 

Alignment to CM Algorithm  



•For each calculation take into 

account the  

•Transition (T) to next state  

•Emission probability (P) in the 

state as  

determined by training data 

Bifurcation – does not have a probability 

associated with the state 

Deletion – does not have an emission  

probability (P) associated with it 

Alignment to CM Algorithm  



Covariance Model Drawbacks 

 Needs to be well trained 

 Not suitable for searches of large RNA 

 Structural complexity of large RNA cannot be 

modeled 

 Runtime 

 Memory requirements 


