
1

CS 202 Fundamental Structures of Computer Science II
Assignment 1 – Algorithm Efficiency and Sorting

Assigned on: 2 October 2015 (Friday)
Due Date: 16 October 2015 (Friday)

Question-1: Tracing(20 points)

Trace the following sorting algorithms to sort the array [25,9,3,7,11,0,2,20,28,5,16]
into ascending order. Use the array implementation exactly as described in the textbook.

a) Insertion sort.
b) Selection sort.
c) Bubble sort.
d) Merge sort; also list the calls to mergesort and merge in the order they occur.
e) Quick sort; also list the calls to quicksort and partition in the order they occur.

Assume that the last item is chosen as pivot.

Question-2: Programming (45 points)

Programming Assignment -- You are asked to implement the selection sort, merge sort and quick
sort algorithms for an array of integers and then perform the measurements as detailed below.

1. For each algorithm, implement the functions that take an array of integers and the size of
the array and then sort it in ascending order. Add counters to count the number of key
comparisons and the number of data moves during sorting.

2. For the quick sort algorithm, you are supposed to take the first element of the array as the
pivot.

3. Write a main function to measure the time required by each sorting algorithm. To this end,
use the library function clock(), which is defined in time.h. Invoke the clock() library
function before and after each sorting algorithm to measure the elapsed time in
milliseconds.

4. Although you will write your own main function to get the experimental results, we will also
write our own main function to test whether or not your algorithms work correctly. In our
main function, we will call your sorting algorithms with the following prototypes.

void insertionSort(int *arr, int size, int &compCount, int &moveCount);

void mergeSort(int *arr, int size, int &compCount, int &moveCount);

void quickSort(int *arr, int size, int &compCount, int &moveCount);

In all of these prototypes, arr is the array that the algorithm will sort, size is the array
size, compCount is the number of key comparisons in sorting, and moveCount is the
number of data moves in sorting. After returning this function, arr should become sorted.

For counting key comparisons, you should count each comparison like “a<b” as 1
comparison. For counting number of moves, you should count each assignment as 1 move,
for example, swap method:

2

void swap(DataType &x, DataType &y) {

 DataType temp = x;

 x = y;

 y = temp;

}

has 3 moves. If you shift left the following array: [1,2,3]->[2,3,1], this operation has 4 moves.

5. Put the implementations of these functions in sorting.cpp, and their interfaces in
sorting.h. Do not include your main function in these files. Submit your main function

inside a separate file, called main.cpp.

6. You will lose a significant amount of points if you do not comply with these naming
conventions.

After implementing the sorting algorithms,

1. Create three identical arrays with random 20,000 integers using the random number
generator function rand. Use one of the arrays for the selection sort, another one for the
merge sort, and the last one for the quick sort algorithm. Output the number of key
comparisons, the number of data moves, and the elapsed time to sort these integers using
each of these algorithms. Repeat this experiment for at least 5 different input sizes that are
greater than or equal to 20,000 (for instance, 20 000, 30 000, 40 000, 50 000, 60 000). With
the help of a graphical plotting tool, present your experimental results graphically. Note
that plot the number of key comparisons, the number of data moves, and the elapsed time
in different figures.

2. Then, create three identical copies of an array with 20,000 integers that are sorted in
descending order. Use each array for each algorithm. Repeat all of the experiments and
present your experimental results graphically. (That is, for each algorithm, create arrays
with at least 5 different input sizes and output the number of key comparisons, the number
of data moves, and the elapsed time to sort these arrays and present your results
graphically.)

3. Lastly, create three identical copies of an array with 20,000 integers that are sorted in
ascending order. Use each array for each algorithm. Repeat all of the experiments and
present your experimental results graphically.

Question-3: Interpretation (5 points)

Interpret your experimental results that you obtained in Question-2. Compare these results with
the theoretical ones for each sorting algorithm. Explain any differences between the experimental
and theoretical results.

Question-4: Algorithm Analysis (15 points)

1. Write a recursive algorithm called findMin for finding the minimum element of a given
arbitrary array of integers. You may assume a min(a,b) method that returns the minimum
of input integers a and b.

2. Prove that your algorithm works correct.

3. Compute the complexity (in terms of comparisons) of your algorithm with recurrence
relations.

3

Question-5: Asymptotic Analysis and Growth-Rate Functions (15 points)

1. Prove that
2. Prove that the solution for the recurrence relation

is

Hint: Use induction.
3. Show that is order of by giving appropriate and values.

HAND-IN

 Before 23:59 of October 16, 2015, upload your solutions to Moodle. You should upload a
single zip file that contains

o hw1.pdf, the file containing the answers to questions 1, 3, 4 and 5, the sample output
of the program, and the graphical findings of the experiments for Question 2.

o sorting.cpp, sorting.h, and main.cpp, the files containing the C++ source code

o readme.txt, the file containing anything important on the compilation and execution
of your program in question 2.

o Do not forget to put your name, student id, and section number, in all of these files.
Well comment your implementation.

o For questions 1, 3, 4 and 5, your solutions should be typed (you may use a word
processor like MS Word and convert it to pdf file or you may use Latex). Do not submit
scans or photographs of your solutions, you will get an immediate 0 (zero). For sample
output of question 2, you should put your screen outputs as text, no screenshots.

o Do not put any unnecessary files such as the files generated from your favorite IDE,
and name your zip file as follows: “SECTION_ID_NAME_SURNAME.zip”(without
quotations); any violation of these will cause a significant point deduction from your
grade.

o Keep all the files before you receive your grade.

o This homework will be graded by your TA, Cem Orhan (cem.orhan at bilkent edu tr).
Thus, you may ask your homework related questions directly to him.

 IMPORTANT: Although you may use any platform and any operating system in
implementing your algorithms and obtaining your experimental results, your
code should work in a Linux environment with the g++ compiler. We will test
your codes in a Linux environment. Thus, you may lose a significant amount of
points, if your C++ code does not compile or execute in a Linux environment.

DO THE HOMEWORK YOURSELF. PLAGIARISM AND CHEATING ARE
HEAVILY PUNISHED!!!

