
1

CS 202 Fundamental Structures of Computer Science II
Assignment 2 –Trees

Date : 19 October 2015
Due Date: 3 November 2015 - 23:59 (Tuesday)
 4 November 2015 - 00:05 (12:05 AM) Wed. 1

Q1) [10 pts]

Give the prefix, infix, and postfix expressions obtained by preorder, inorder, and postorder traversals,

respectively, for the expression tree below:

Q2) [10 pts]

Draw the initially empty Binary Search Tree after operations as follows (show all intermediate steps):

insert 42, 27, 31, 19, 89, 62, 100, 83, 22, 75, 52, 12, 72, 90; then delete 52, 22, 42.

Q3) Programming Assignment [60 pts]

You are to write a C++ program to count the frequency (number of occurrences) of n-grams in a text

file. Definition of n-gram is simple: it is the number of consecutive letters in a given text. For example,

for the word bilkent the 2-grams (bigrams) are bi, il, lk, ke, en, nt. You may ignore any capitalizations

and assume that the text file contains only English letters 'a'...'z', 'A'…'Z', and the blank space to

separate words. Your program should take the value of n as a parameter and construct the corresponding

BST accordingly. While processing the input text, if your program encounters a word that has length

smaller than the value of parameter n, you can simply ignore that word and process following words.

You are to use a pointer based implementation of a Binary Search Tree (BST) to store the n-grams and

their counts. (You can use the source codes available in the course book as well as you can implement a

BST yourself.) Each node object is to maintain the associated n-gram as a string, its current count as an

integer, and left and right child pointers. On top of the regular operations that a BST has, you must

implement the following functions:

o addNgram: adds the specified n-gram in the BST if not already there; otherwise, it
simply increments its count.

1
 Due to a Moodle peculiarity the submission time has been changed: You have 6 extra minutes with respect to the previously

announced time.

-

x /

x

A

a

B

B

-

E

E

E

+

+

+

4

+

+

+

5

+

+

+-

+

+

+

C

C

C

D

D

D

D

+

E

E

F

+

+

4

+

+

+

5

+

+

+-

+

+

+

H

E

E

G

+

+

4

+

+

+

5

+

+

+-

+

+

+

2

o generateTree: reads the input text and generates a BST of n-grams. In this function, you
should detect all of the n-grams in the input text and add them to the tree by using the addNgram
function. This function also requires the parameter n.

O getTotalNgramCount: recursively computes and returns the total number of n-grams

currently stored in the tree.

o printNgramFrequencies: recursively prints each n-gram in the tree in alphabetical order
along with their frequencies.

o isComplete: computes and returns whether or not the current tree is a complete tree.

o isFull: computes and returns whether or not the current tree is a full tree.

Below is the interface of an NgramTree class for implementing the above functionality as well as a

main function to test it with a sample input text file. These will be used for evaluation purposes.
Make sure your code runs correctly against these. We will test your program extensively.

// hw2.h

…

//NgramTree class

class NgramTree

{

public:

 NgramTree();

 ~NgramTree();

void addNgram(string ngram);

int getTotalNgramCount();

void printNgramFrequencies();

bool isComplete();

bool isFull();

void generateTree(string fileName, int n);

…

private:

…

};

…

3

// hw2.cpp

#include "hw2.h"

#include <stdlib.h>

…

// main function

int main(int argc, char **argv)

{

NgramTree tree;

string fileName(argv[1]);

int n = atoi(argv[2]);

 tree.generateTree(fileName, n);

cout << “\nTotal “ << n << “-gram count: ”

<< tree.getTotalNgramCount()) << endl;

tree.printNgramFrequencies();

 cout << n << ”-gram tree is complete: "

<< (tree.isComplete() ? "Yes" : "No") << endl;

//Before insertion of new n-grams

cout << “\nTotal “ << n << “-gram count: ”

<< tree.getTotalNgramCount()) << endl;

tree.addNgram(“samp”);

tree.addNgram(“samp”);

tree.addNgram(“zinc”);

tree.addNgram(“aatt”);

cout << “\nTotal “ << n << “-gram count: ”

<< tree.getTotalNgramCount()) << endl;

tree.printNgramFrequencies();

 cout<< n << ”-gram tree is complete: "

<< (tree.isComplete() ? "Yes" : "No") << endl;

 cout<< n << ”-gram tree is full: "

<< (tree.isFull() ? "Yes" : "No") << endl;

return 0;

}

// input.txt

4

this is sample text

and thise is all

// Sample output

Total 4-gram count: 6

"ampl" appears 1 time(s)

"hise" appears 1 time(s)

"mple" appears 1 time(s)

"samp" appears 1 time(s)

"text" appears 1 time(s)

"this" appears 2 time(s)

4-gram tree is complete: No

4-gram tree is full: No

Total 4-gram count: 8

"aatt" appears 1 time(s)

"ampl" appears 1 time(s)

"hise" appears 1 time(s)

"mple" appears 1 time(s)

"samp" appears 3 time(s)

"text" appears 1 time(s)

"this" appears 2 time(s)

"zinc" appears 1 time(s)

4-gram tree is complete: No

4-gram tree is full: No

The following is the BST constructed for the input text whe .

5

Q4) [20 pts]

Analyze the worst-case running time complexities of the addNgram and printNgramFrequencies

functions in the previous question using the big-oh notation.

HAND IN

 Before 23:59 of November 3, 2015, upload your solutions using Moodle .You should upload a single
zip file that contains

o hw2.pdf, the file containing the answers to Questions 1,2 and 4, and the sample output of
the program.

o hw2.cpp, hw2.h, and main.cpp, and any additional files if you wrote additional classes in
your solution, and

o readme.txt, the file containing anything important on the compilation and execution of
your program in Question 3.

o You should be able to compile your program on a Linux terminal with the following
command:

 g++ *.cpp –o hw2
o Do not forget to put your name, student id, and section number, in all of these files. Well

comment your implementation.

 For this assignment, you must use your own implementation of binary search trees. In other
words, you cannot use any existing binary search tree code from other sources such as the binary
search tree class in the C++ standard template library (STL). However, you can adapt the binary
search tree codes in the Carrano (5th ed.) or Carrano-Henry (6th ed.) book. You will get no
points if you do not use binary search trees as indicated.

IMPORTANT: Although you may use any platform and any operating system in implementing your
algorithms and obtaining your experimental results, your code should work in a Linux environment with the
g++ compiler. We will test your codes in a Linux environment. Thus, you may lose a significant amount of
points, if your C++ code does not compile or execute in a Linux environment.

this[2]

samp[1]

text[1] ampl[1]

mple[1]

hise[1]

6

 Keep all the files before you receive your grade.

 This homework will be graded by your TA Cem Orhan (cem.orhan at bilkent edu tr). Thus, you may
ask your homework related questions directly to him.

DO THE HOMEWORK YOURSELF. PLAGIARISM AND

CHEATING ARE HEAVILY PUNISHED!!!

