CS281-Spring 2015 Week No. 12 class Days: April 21, 23

## Note Takers: Gökhan Arıtürk, Serhat Ozan Altuntuğ, Melih Yücel

## Irreducible(minimal) Sets Of Functional Dependencies

A set of functions is irreducible if and only if:

- **1.** The right hand side of every FD is a single attribute
- 2. We cannot replace FD X--> A with a FD Y-->A where Y is a proper subset of X and still have a set of F.D.'s equivalent to F.
- 3. We cannot remove any F.D. from F and still have a set of F.D.'s equivalent to F.

## Algorithm:

- **1.** Set G:= F
- **2.** Replace each F.D. x-->A1, A2,A3 ,....An in G with FD's x-->A1, x-->A2,.... x-->An(decomposition).
- **3.** For every FD x-->A in G for each attribute B that is an element of x.

if  $\{G-(x->A)\} \cup \{(X-B)-->A\}$  is equivalent to G, then replace X-->A with (X-B)-->A (simplify left sides).

**4.** For every remaining FD x-->A in G, if {G-(X-->A)} is equivalent to G then remove X--A from G.

## Example:

F ={ A-->BC, B-->C, A-->B, AB-->C, AC-->D}

- **1.** G:=F
- **2.** G: { A-->BC, B-->C, A-->B, AB-->C, AC-->D}
- **3.** AC-->D can be replaced

G= {A-->B,A-->C,B-->, A-->D}

**4.** A-->C is implied (A-->B, B-->C); so drop A-->C G = {A-->B, B-->C, A-->D}

# Boyce Code Normal Form

A relation R is in BCNF if for every FD x-->Y associated with R is either:

- **1.**  $Y \subset X$  (*i.e.* the FD is trivial
- 2. X is a super key of R.

Example: Person1(<u>ssn</u>,name,address)

The only F.D is ssn--> name, address(ssn-->name,ssn--address)

ssn is key(superkey) so Person1 is in BCNF.

1NF,2NF,3NF,BCNF

1NF: each attribute is atomic

| student(ssn,  | name,          | dept,      | hobbies)                               |
|---------------|----------------|------------|----------------------------------------|
| s1,<br>s2,    | ahmet,<br>oya, | cs,<br>ie, | reading/music/cooking<br>karate/hiking |
| student1(ssn, | sname,         | dept,      | hobby)                                 |
| s1,           | ahmet,         | CS,        | music                                  |
| s1,           | ahmet,         | CS,        | music                                  |
| s1,           | ahmet,         | CS,        | cooking                                |
| s2,           | oya,           | IE,        | karate                                 |
| s2,           | oya,           | IE,        | hiking                                 |

Red tuples are redundant.



Now, we can easily add a student with no hobby. If a student changes dept, make the only tuple.

#### Irreduciable (Minimal) Sets of Functional Dependencies

A set of F of FDs is irreduciable if

1. The right-hand side of every FD is a single attribute

2. We cannot replace FD X  $\longrightarrow$  A with a FD Y-A where Y is a proper subset of X(Y C X) and still have a set of FDs equivalent to F.

3. We cannot remove any FD from F and still have a set of FDs equivalent to F.

Algorithm:

1. Set G:=F

2. Replace each FD X  $\rightarrow$  A1, X  $\rightarrow$  A2...,X  $\rightarrow$  An (decomposition)

3. For every FD X  $\longrightarrow$  A in G for each attribute B that is an element of X

 $\{\underline{if} (G-\{X-A\}U \{(X-B) \longrightarrow A\} \text{ is equivalent to } G \text{ then replace } X \longrightarrow A \text{ with } (X-B) \longrightarrow A (simplify left sides)$ 

4. For every remaining FD X  $\longrightarrow$  A in G

{if (G-(X-A)) is equivalent to G then remove  $X \longrightarrow A$  from G (remove all redundant ones)

Example.

 $F = \{A \longrightarrow BC, B \longrightarrow C, A \longrightarrow B, AB \longrightarrow C, AC \longrightarrow D\}$ 

1. G:=F

2. G: {A  $\rightarrow$  BC, B  $\rightarrow$  C, A  $\rightarrow$  B, AB  $\rightarrow$  C, AC  $\rightarrow$  D}

3. AC  $\rightarrow$  D can be replaced G={A  $\rightarrow$  B, A  $\rightarrow$  C, B  $\rightarrow$  C, A  $\rightarrow$  D}

4. A  $\rightarrow$  C is implied (A  $\rightarrow$  B, B  $\rightarrow$  C) so drop A  $\rightarrow$  C G={A  $\rightarrow$  B, B  $\rightarrow$  C, A  $\rightarrow$  D}

#### BCNF= Boyce Codd Normal Form

### A relation R is in BCNF if for every FD X-Y associated with R is either

1. Y  $\underline{C}$  X (i.e., the FD is trivial)

2. X is a super key of R

Example. Person1(ssn, name, address)

The only FD is ssn→name, address

Ssn is key (superkey) so Personl is in BCNF

### 1NF, 2NF, 3NF, BCNF

1NF: each attribute is atomic

#### Student(ssn, name, dept, hobbies)

| <b>S</b> 1 | ahmet | cs | reading, music, cooking |
|------------|-------|----|-------------------------|
| S2         | oya   | ie | karate, hiking          |

Student1(ssn, sname, dept, hobby)



Student1(<u>ssn</u>, sname.dept)

student2(ssn, hobby)

| <b>S</b> 1 | ahmet cs | <b>S</b> 1 | reading |
|------------|----------|------------|---------|
| S2         | oya ie   | <b>S</b> 1 | music   |
| <b>S</b> 3 | zeynepie | <b>S</b> 1 | cooking |
| +          |          | <b>S</b> 2 | karate  |
|            |          | <b>S</b> 2 | hiking  |
| /          |          | <b>S</b> 3 | reading |

We can easily add a student with no hobby

If a student changes dept make the only one tuple