Week 9 Lecture Notes: 30.03.2015 - 03.04.2015

Note Takers: Sarper Aydın – Semih Kaldırım

CHAPTER 19: Functional Dependencies

- The functional dependency X →Y says either of the following : i) X determines Y and ii) Y is dependent on X. In a relationship, these functional dependencies should be TRUE for ALL instances of a relation
- Functional dependencies of a relation can also be taken as integrity constraints for that relation (i.e correctness requirements).
- Functional Dependencies can be used to identify problems (as they are a source of for the problems) in relational schemas.
- These problems are update, addition and deletion anomalies.

Relational Decomposition (Schema Refinement)

- Relational decomposition is a method to get rid of the problems arising from the functional dependencies.
- In order to do this there exists certain normal forms for relations which is known to reduce these problems.
- These normal forms are: First Normal Form (1NF), 2NF, 3NF and Boyce-Codd Normal Form.

eno	ename	city	status
e1	Ali	34	1
e2	Veli	34	1
e3	Oya	35	1
e4	Hasan	35	1
e5	Merve	26	2

<u>Consider the following example:</u> Employee (<u>eno</u>, ename, city , status)

Problems regarding this relation:

- i) Redundancy: The entries entered in red (color) are a source for redundancy as status of the city 34 is repeated twice (or already entered in first tuple).
- ii) How to add a new city? A person working in there is needed so that a new city can be added into relation \rightarrow This leads to the addition anomaly.
- iii) To change the status of city 34, we need to change several (more than one) tuples \rightarrow This leads to update anomaly.
- iv) Delete 'Merve' \rightarrow We lose the info that city='26' has status='2' \rightarrow This leads to the deletion anomaly.

The method behind the normalizations is the following:

One Large Table \rightarrow Normalization is Done \rightarrow Smaller Tables

By this methodology, the problems arising from the functional dependencies can be avoided.

For the mentioned problems, consider the following relational decomposition:

Employee \rightarrow Emp (<u>eno</u>, ename, ecity) & CityStatus (<u>city</u>, status)

eno	ename	city
e1	Ali	34
e2	Veli	34
e3	Оуа	35
e4	Hasan	35
e5	Merve	26

city		status	
	34		1
	35		1
	26		2

What did we gain by this decomposition? Consider the following query in relational algebra: Display the status of e1

- i) Before relational decomposition: π_{status} ($\sigma_{\text{eno=e1}}$ (Employee))
- ii) After relational decomposition: π_{status} ($\sigma_{\text{eno=e1}}$ (Emp) \bowtie CityStatus)
- iii) Emp ⋈ CityStatus gives the whole Employee relation. Such a decomposition is calledLossless Decomposition. If it's otherwise, it's called Lossy Decomposition.

First Normal Form (1NF)

- Each attribute or column must have an atomic value (not a set value but a singular value)

Consider the following relation: students (stno, stname, dept, hobbies)

stno	stname	dept	hobbies
s1	Ali	IE	reading, music , hiking

We decompose it in the following way: students1 (stno, stname, dept) & students2 (stno, hobby)

- t1, t2 are tuples. If X \rightarrow Y, then t1 . X \rightarrow t1 . Y or t2 . X \rightarrow t2 . Y

stno	stname	dept
s1	Ali	IE
51	All	

stno	hobby
s1	reading
s1	music
s1	hiking

- As seen from the decomposition, all attributes have an atomic value. Therefore, this is a decomposition into First Normal Form.

Hierarchy of Normal Forms:

- BCNF is a subset of 3NF; 3NF is a subset of 2NF; 2NF is a subset of 1NF

Example regarding relational decomposition and functional dependencies: R (A, B, C, D, E) and ABC \rightarrow E and A= {a1, a2, a3} and E = {e1, e2, e3}

Α	В	С	D	Е
a1	b1	c1	d1	e1
1	b1	c2	d2	e2
2	b1	c1	d3	e3
a3	b2	c1	d4	3
a1	b1	c1	d5	4
5	b1	c1	d6	e1

We are trying to deduce the entries in red (1, 2, 3, 4):

- 5 = a1 (From the functional dependency we see that D has no effect in determining E. So from the first tuple, we can deduce that a1,b1,c1 determines the E value as e1 so A=a1).
- 4 = e1 (From the sixth tuple and functional dependency we see that D has no effect in determining E. So from the first tuple, we can deduce that a1,b1,c1 determines the E value as e1).
- 2= a3 or a2 (Because B and C values are same as first tuple, the difference in E comes from the difference in the A entry but we can not know for sure if it is a3 or a2).
- 1= a1 or a2 or a3 (Because the difference in E can either come from different A or C values)
- 3 = e1 or e2 or e3 (Different A and B values may result in either of the E values)

Armstrong Axioms

1) Reflexivity

 $X\supseteq Y \text{ then } X \xrightarrow{} Y$

{Name, Last Name} \rightarrow {Name}

Trivial functional dependecy

2) Augmentation

 $X \! \rightarrow \! Y$ then $XZ \! \rightarrow \! YZ$

3) Transivity

 $X{\rightarrow}\,Y$ and $Y{\rightarrow}\,Z$ then $X{\rightarrow}\,Z$

Derived Axioms

Union

 $X{\rightarrow}\,Y\,and~X{\rightarrow}\,Z\,then~X{\rightarrow}\,YZ$

Derivatives using by Augmentation and Transivity

 $X \rightarrow Y$ augment it with Z then $XZ \rightarrow YZ$

 $X{\rightarrow}~Z$ augment it with X then $XX{\rightarrow}~XZ$

From transivity

 $XX {\rightarrow} XZ {\rightarrow} YZ \Longrightarrow X {\rightarrow} YZ$

Decomposition

 $X {\rightarrow} YZ$ then $X {\rightarrow} Y$ and $X {\rightarrow} Z$

Use Reflexivity and Transivity

 $YZ{\rightarrow}\,Y$

 $YZ \rightarrow Z$

From Transivity,

 $X{\rightarrow}\,YZ{\rightarrow}\,Y$ then $X{\rightarrow}\,Y$

 $Y {\rightarrow} YZ {\rightarrow} Z$ then $X {\rightarrow} Z$

Pseudo Transivity

 $X \rightarrow Y \text{ and } YZ \rightarrow W \text{ then } XZ \rightarrow W$

Augmentate $XZ \rightarrow YZ$

 $XZ \rightarrow YZ$

 $\rm YZ{\rightarrow}W$

Then $XZ \rightarrow W$

Accumulation

 $X{\rightarrow}\,Y$ and $Y{\rightarrow}\,Z$ then $X{\rightarrow}\,YZ$

Proving validty of a Functional Dependency

 $\textbf{EX:}~\textbf{X}{\rightarrow}~\textbf{Y}~\text{and}~\textbf{W}{\rightarrow}~\textbf{Z}$

Then, does XW \rightarrow YZ hold?

 $X\!\rightarrow Y$

By Augmentation ,

 $XZ \rightarrow YZ$

 $W\!\rightarrow\!Z$

By Augmentation,

 $WX \rightarrow ZX$

 $XW \rightarrow XA$

From Transivity,

 $XW \rightarrow YZ$

Implications (Results) and FD Clousure

The set of all FDs implied by a set of given FDs is called the clouse F^+ .

 $F: \{ X \rightarrow Y, Y \rightarrow Z \}$

 $F^{^{+}}: \{ X \rightarrow Y, Y \rightarrow Z, X \rightarrow Z \}$

Armstrong Axioms are sound and complete in terms of F⁺.

- **Soundness:** All FDs are found by applying Armstrong Axioms are in F⁺. Nothing extra.

- **Completeness:** All FDs in F^+ can be generated by the application of the axioms of the original set of F.

Important Note: Any FD generated by appliying R(reflexivity) is called trivial FD.

F⁺ Example

	А	В	С	AB	AC	BC	ABC	
А	R		G					
В		R						
С			R					
AB	R	R	(1) R ,T	R	(4)R		R,A,T	
AC	R		R		R			
BC	G	R	R	(2) A	А	R	(3)A	
ABC	R	R	R	R	R	R	R	

R: Reflexivity

A: Augmentation

T: Transitive

G: Given

1) R,T	2) BC \rightarrow AC	3) BC \rightarrow ABC	4) AB \rightarrow A
AB→C	BC→A	BC→A	A→C
AB→A	BBC→AB	ABC→AA	AAB→AC
A→C	BC→AB	ABC→A	AB→AC
		BC→ABC	
		BC→A	
		BBCC→ABC	
		BC→ABC	