
24/03/2015

SQL IN ACCESS

QUERY1:Students with the status „MS‟ or „Ph‟ in city „ankara‟

SELECT city, sname, sid

FROM students

WHERE (city='ankara') And (status In ('MS','PhD'));

Aggregate Operators

SUM,AVG,MIN,MAX,COUNT

QUERY2: Gives the sum of department capacitywhich has the department name

“EngineeRing”(Case insensitive so that it also searches in department name

Engineering),(*something* the stars are the wildcard characters, anything can comes before

and after it)

SELECT SUM(d_capacity) AS EngineeringCapacity

FROM department

WHERE d_name LIKE '*EngineeRing*';

QUERY3:Students takes the course CS281 and their students id‟s are equal to enrollment

id‟s.(AS is optional)

SELECT *

FROM students AS s, enrollment AS e

WHERE s.sid=e.sid And e.cid="CS281";

QUERY4:Students average CGPAwho have a faculty member,Zeynep Nadir, as advisor

SELECT AVG(cgpa) AS avgCGPA

FROM students AS s, facultyMember AS f

WHERE s.advisor_id=f.fid And f.fname='Zeynep Nadir';

QUERY5:Shows the course id‟s, how many students have taken it and the average CGPA of

that courses.

SELECT cid, COUNT(*) AS totalStudents, AVG(cgpa) AS avgCGPA

FROM students AS s, enrollment AS e

WHERE s.sid=e.sid

GROUP BY cid

HAVING count(*)>0;

QUERY 6: Finding the number of students who are undergraduate, graduate and phD.

SELECT s.status, COUNT(*) AS totalStudents

FROM students AS s

GROUP BY s.status;

QUERY7: Showing the students who are below average.

SELECT *

FROM students AS s

WHERE s.CGPA < (SELECT AVG(CGPA) FROM students);

QUERY8: Showing the students‟ ids who donot get F,FX or FZ from ECON 101 course and get A or

A- from CS 281.

SELECT s.sid

FROM students AS s, enrollment AS e

WHERE s.sid = e.sid AND e.cid = "CS281" AND e.grade IN ("A", "A-") AND s.sid NOT IN

(

SELECT s.sid FROM students s, enrollment e WHERE s.sid = e.sid AND e.cid =

"ECON101" AND e.grade IN ("F", "FX", "FZ")

);

(This is a nested query)

QUERY9: Showing the departments who do not have any faculty member.

SELECT *

FROM department AS d

WHERE NOT EXISTS

(

SELECT *

FROM facultyMember f

WHERE d.dept_id = f.dept_id

);

(This is corrolated query)

QUERY10: Showing the students who are enrolled in CS 281 course in s13 or s12.

SELECT s.sid

FROM students s, enrollment e

WHERE s.sid = e.sid AND e.cid = "CS281" AND e.semester = "S13"

UNION SELECT s.sid

FROM students s, enrollment e

WHERE s.sid = e.sid AND e.cid = "CS281" AND e.semester = "S12";

QUERY11: Showing students who have taken cs 281 only once.

SELECT s.sid

FROM students AS s, enrollment AS e1

WHERE s.sid = e1.sid AND e1.cid = "CS281" AND s.sid NOT IN

(

SELECT e2.sid

FROM enrollment e2

WHERE e2.cid = "CS281"

GROUP BY e2.sid

HAVING COUNT (*) > 1

);

CHAPTER 19

Schema Refinement

-Normalization

- Functional Dependency (FD)

-Normal Forms: First Normal Form (1NF), 2NF, 2NF

 Boyce Code Normal Form: BCNF

-Armstrong Axioms

Relations with redundanciesRelations with no dependency

A large table

 Smaller Tables

Problems due to Redundancy:

1. Update Anomaly: unnecessary update of several tuples

2. Deletion Anomaly: delete something, due this deletion we delete another thing that we need

3. Insertion Anomaly: In order to insert a necessary information, we need to enter unnecessary

information

Ex: employee(eno, ename, city, status)

 E1 Ali 34 1

 E2 Ayşe 34 1

Schema

Refinement

 E3 Veli 35 1

 E4 Zeynep 35 1

E5 Oya 06 2

Update Anomaly: Change status of İstanbul from 1 to 5

 -need to update several tuples

Deletion Anomaly: Delete Oya then we will lose the information that is status for Ankara

Insertion Anomaly:In order to include status of Eskişehir(26), we need to have an employee in

Eskişehir. So, we may use a fake employee name.

SOLUTION:

Relation Decomposition

Make sure that we have a losless decomposition

FD: they are integrity constraints

R1(eno, ename, city) R2(city, status)

E1 Ali 34 34 1

E2 Ayşe 34 35 1

E3 Veli 35 06 2

E4 Zeynep 35

E5 Oya 06

Employee= R1 R2

We obtain the original employee relation, therefore, we have a losless decomposition

Lossy Decomposition

Ra (eno, ename, status) Rb(city, status)

E1 Ali 34 1 34 1

E2 Ayşe 34 1 35 1

E3 Veli 35 1 06 2

E4 Zeynep 35 1

E5 Oya 06 2

Ra Rb = Rab (eno, ename, status, city)

 E1 Ali 1 34

 E2 Ali 1 35

E2 Ayşe 1 34

