CS351, Fall 2009, HW2 Solutions by Salim Sarimurat

S. 1.
a.

We use track-sized buffers and suppose that processing one block of data takes 0.5 times
the read time.

We read in one track, and then we begin processing it while we read in the second track.
Since the time for CPU processing is less than 1/0 time, we are finished with the first buffer
when we are in a position to read the third track. So, at the next revolution, we read in the
third track and process the second track. Then we read the fourth track and process the
third track.

So, while we are processing (Z) t track, we will be reading the next (Z+1) t track and
continue processing until the last track of the file is reached.

For this reason, total time is limited tob x ebt .
b.

We use track-sized buffers and suppose that processing one block of data takes 1.5 times
the read time.

We read in one track, and then we begin processing it while we read in the second track. We
are not yet finished with the first buffer when we are in a position to read the third track
because the time for CPU processing is 2 times than [/O time. So, we do not get any new
track for one revolution till we finish processing the first track and start processing the
second track. Then we read in the third track while finishing the processing of the second
track. Then we read in the fourth track and begin processing the third track.

So, while we are finishing the processing of the (Z) th track, we will be reading the next
(Z+1) th track. For the next revolution, we will be working on processing the (Z+1)t track so
we do no reading. Then we will read (Z+2) t track and start processing the (Z+1) th track.
This will continue until the last track of the file is reached.

. . 3
For this reason, total time is limited to Eb xebt.

S. 2.

For deleting 1 record for every 3 records added until the total number of records is
150,000, we need to do Z number of deletions for 3Z number of insertions on the file.

100,000records — z + 3z =150,000records
z = 25,000records



Finding Z as 25,000 records; we say that there are 25,000 records are marked as deleted

and 75,000 records are added when we have 150,000 records in the file.

175,000

reorganization, we have blocks and after reorganization

150,000 records in the file.

175,000 150,000

T, x0.84 + x 0.84 = 45,500msec = 45.5sec

So, it takes 45.5 second to reorganize this file assumingebt = 0.84msec.
Before reorganization process of this pile file, finding a record time is;

(175,000
T: =

= +j x0.84 =12,250msec =12.25sec

After reorganization process of this pile file, finding a record time is;

(150,000
T: =

_ +j «0.84 = 10,500m sec = 10.5sec

S. 3.

Assuming the block size (B) is 2400 bytes, the blocking factor is Bfr = %

=6. Before

we will have

Since we are expected to report this pile file in an ordered format, we will first sort it. We
will accept the files as numbers and use heaps. Assuming the memory is capable of storing

this file as a whole, using heaps is the most efficient way to sort.

The way of approaching records while sorting is as following. If we have a record as;

“City3 Country64 Town644 Village 25”
We will mark it as 3-64-644-25 while sorting in order to ease our job.
When we are done with sorting, we will create;

(# of Cities) x (# of Countries) x (# of Towns)



amount of variables in the disk and mark them as holding the total population of the towns
of every country of cities.

Then we will have the necessary information for reporting. Since these variables are also
ordered, we will start listing the report with the given format.

1. Insert 320 2. Insert 315

3. Insert 330 4. Insert275

5. Insert 310



6. Insert 305

7. Insert250

8. Insert 325

9. Insert290



10. Insert 100

12.Insert 150



13.Insert 170

14.Insert 140

15.Insert 210



16.Insert 175

17.Insert 205

1. Input 311, Output 100




2. Input 276, Output 140

3. Input 110, Output 150




Mew Priority Clusue:

4. Input176, Output 170

Mew Priorily Queue;

5. Input 261, Output 175




Mew Priority Queue:

6. Input 321, Output176

Mewy Priority Cueus:

7. Input 212, Output 180




Mew Priority Queue:

110

Unit Strings
0ld Queue: 205, 210, 212, 250, 261, 275, 276, 290, 305, 310, 311, 315, 320, 321, 325, 330

New Queue: 110

Outputs: 100, 140, 150, 170, 175, 176, 180, 205, 210, 212, 250, 261, 275, 276, 290, 305,
310, 311, 315, 320, 321, 325, 330

S.5.

Firstly, we should sort the files first. Since the memory size is limited to 10 MB, the most
efficient way of sorting the files is using n-way sort method.

The formula provided to sort a file using the n-way sort is the following;

Toerge = (2x bx ebt)+[l0g,, (nsg)]x [2x P x (nsg) x (s + 1) + 2x b x ebt]

This includes the time to sort the segments first, and the time for log base P of nsg passes. If
we can get rid of this logarithm, we will need to consider only one merging pass. So we
should make the logarithm base P and nsg the same. By doing this, formula becomes;

T =4xbxebt+2xPxnsgx(r+s)

Merge
and the time for sorting becomes cheap. We will use this logic for both of the files.

Secondly, when we have sorted the files, we will be able to compare them easily. We will
divide the memory into two pieces and get 5 MB segments of the files into the memory to
compare. Since we have sorted them, by just reading once, we are able to compare and
gather the common records.

For example, after we have sorted the files we will read the first 5 MB segments of them
into the memory. If the last record of the segment coming from the M1 file is not in the M2
file, we will continue reading 5 MB segments of the M2 file until we reach the last record of
the M1 file. Whenever we reach to the last record of the segment coming from the M1 file,



we will read another segment from M1 file and continue comparing it with the segments
coming from M2 file. So, in this way, we will need to read the files once only.

Thirdly, we will need to write the resulting records into a file. The only difference between
the a) and c) parts of this question is the write phase. For part a) we will write 1 million
duplicate records back to the file. For part c) we will write 11 million non-duplicate records
back to the file.

a.

1. We will sort the M1 magazine subscription file using the only disk drive that we
have. Since we have 10 million records, a 100 way merge sort on 100 segments of 10
megabytes will do the job.

2. We will sort the M2 magazine subscription file using the only disk drive that we
have. Since we have 2 million records, a 20 way merge sort on 20 segments of 10
megabytes will do the job.

3. Since M2 file is shorter, we will read that file into the memory and compare it with
M1 file. Until the last record of the M2 file, we will do the following process
repeatedly;

Read in 5 megabytes of the sorted M2 file into memory.

b. Read in 5 megabytes of the M1 file up to the record coming after the last
record of M2 file in memory.

c. Compare the records.
i. Ifthey are common, write it to the output file.
ii. If not, continue with the following 5 MB segment of M2 file.
4. Write the duplicate 1 million records into a file.

b.

We know the formula for calculating the time for sorting with one disk drive n-way merge
as;

So, sorting M1 file using 100-way merge costs;

4y 10,000,000records x 100bytes
Meroe = 2400bytes
=1,886,000ms = 31,4 min

T

x 0.84ms + 2 x 100 x 100 x (16ms + 8.3ms)

T

Merge
Sorting M2 file using 20-way merge costs;

4y 2,000,000records x 100bytes

T
Meroe 2400bytes

x 0.84ms + 2 x 20 x 20 x (16ms + 8.3ms)

T. =4,990.6ms=5min

Merge



Then we will calculate the time necessary for reading both files. Because we need to
compare them, it is necessary to read both files entirely. We will ignore the seek and
rotational latency times because the number of segments in these files are less.

So, time to read M1 file;

_10,000,000records x 100bytes
2400bytes

T: x 0.84ms = 350,000ms = 350 sec

And time to read M2 file;

_2,000,000records x 100bytes
2400bytes

T: x 0.84ms =70,000ms = 70sec

Finally, we will need to calculate the time needed to write these records into the file. Since
we have 1 million common records, we will need to calculate the time needed to write these
1 million records into a file.

_1,000,000records x 100bytes

Turiee = x 0.84ms = 70,000ms = 35sec
2400bytes

So, total time for this whole process is;
T = (sorting M1) + (sorting M2) + (reading M1) + (reading M2) + (writing 1 million records)
T =31.4 min + 5 min + 350 sec + 70 sec+ 35 sec

T = 44 min

C.

Here we will write one copy of the common records. If two common records came across in
the memory, one of them will be written to the file and the other one will be ignored. In this
way, we will be able to get the 11 million non-duplicate records.

1. We will sort the M1 magazine subscription file using the only disk drive that we
have. Since we have 10 million records, a 100 way merge sort on 100 segments of 10
megabytes will do the job.

2. We will sort the M2 magazine subscription file using the only disk drive that we
have. Since we have 2 million records, a 20 way merge sort on 20 segments of 10
megabytes will do the job.

3. Since M2 file is shorter, we will read that file into the memory and compare it with
M1 file. Until the last record of the M2 file, we will do the following process
repeatedly;

a. Read in 5 megabytes of the sorted M2 file into memory.



10

b. Read in 5 megabytes of the M1 file up to the record coming after the last
record of M2 file in memory.

c. Compare the records.
i. If they are not common, write it to the output file.
ii. If not, continue with the following 5 MB segment of M2 file.
4. Write the non-duplicate 11 million records into a file.
d.

We already have calculated the time required for most of the steps of the algorithm above.
The only thing that we need to calculate is the time for writing the 11 million records back
to the file.
T 11,000,000records x 100bytes
e 2400bytes

x 0.84ms = 70,000ms = 385sec

So, total time for this whole process is;

T = (sort M1) + (sort M2) + (read M1) + (read M2) + (write 11 million records)
T =31.4 min + 5 min + 350 sec + 70 sec+ 385 sec

T =49.8 min



