Safa Eristi

Sec03

CS 351 — Homework 2

Answer 1.

a)

On IBM 3380, we have 20 blocks of 2400 bytes on each track. The question gives that it takes
0.5 times the read time to process one block of data. This means it also takes 0.5 times the
read time to process one track. To illustrate;

1/0 Cpu First Buffer Second Buffer
Read 1% - - -
Read 2™ Process 1 1 -
Read 2™ - 1 -
Read 3™ Process 2 1 2
Read 3™ - 1 2
Read 4™ Process 3 3 2
Read 4™ - 3 2
Read 5™ Process 4 3 4

In this example 1/0O time is larger than CPU time and since there is overlapping. We
only need to calculate the I/0 time.

The time it takes to read one track is; 20*ebt (neglecting the s+r)

We have b number of blocks, it means it covers b/20 number of tracks. So the total
time is: b/20 * [20 * ebt] =b * ebt

b)
In this case it takes 1.5 times the read time to process one block of data. Meaning
that it takes 1.5 times the read time to process one track.
In this scenario, CPU time is larger than I/O time. Since we do overlapping, we can
ignore 1/0 time. So the total time is;
b/20 *[3/2 * 20 * ebt] = 1.5 * b * ebt

Answer 2.

To find the exact number, I will use IBM 3380°s specifications. To find the time for
reorganization the formula is; Ty = (b+n/Bfr) * ebt.

For every 3 record we add we delete one record. So it means that when we have 150.000
record, we will have 25000 records marked as deleted.

Bfr = 2400/400 = 6.
If we plug in the numbers we get Ty = (175,000/6 + 150,000/6)* 0.84 = 45,500ms

l|Page

Safa Eristi

Sec03
Before reorganizing, we had 175,000, so It takes (175,000/6) * 0.84/2 = 12250ms to fetch

After reorganizing we have 150,000 records. So it takes (150,000/6) * 0.84/2 = 105000ms to
fetch

Answer 3.

We are asked to print total population of a town within a county, total population of a
county within a city and total population of a city.
First, we open 2-dimensional array in the memory and We start processing the file, for

every unique
|CITY | COUNTY | TOWN |
weadd | CITY [COUNTY | TOWN | POPULATION |

instance to the array. Whenever we come across a record with same city, county and town,
we add its population to the existing population. For example let the first record be Artvin,
Savsat, YavuzKoy, Ahmetler with 200 population, we have

| Artvin | Savsat | Yavuzkoy | Ahmetler | 200 | And let the 10" record be

‘ Artvin ‘ Savsat ‘ Yavuzkoy | Mehmetler ‘ 100 ‘ Then in the memory we would have

| Artvin | Savsat | Yavuzkéy | 300 | After finishing processing the file we will only deal with
the array

Since we have unique entries for every county-town, we just go through the array
and whenever we see COUNTY1-TOWN1, we print the population. Now, as we go through
the array and print the town populations for a specific county, we also keep the sum of these
populations in another variable and print it whenever we finished printing towns of a specific
county as the total population of a county within a city.

Last, we need to print the total population of a city. To do this, we need to have
another variable for total city populations. In the second part, we kept the populations of
the counties. Whenever we finished printing total populations of the counties, we keep this
number in the variable and update it (add the population of the new county) every time we
finish a new county. This way when we finished printing total populations of the counties of
a specific city, we just take the sum of this array and print it as the total population of the
city.

We repeat this process for every city and the report would be produced.

If the memory is not big enough to hold this 2-dimensional array, whenever the
memory is full we write the array to the disk, and start a new 2-dimensional array. This array
can have same entries as the first array. Since we do not know the entries of the first array
when we are filling the second.

This would require an additional one I/O time for every step. Because we can add the
values in the first array, and get the second array from the disk, and continue to add the
values and print the result.

2|Page

Safa Eristi

Sec03

Answer 4.

a)

320

315

320

330

315

320

315

320

275

330

310

o
o~
o

275

275

275

275

320

305

330

310
315

320

330

305

310
315

320

315

250

275

275

310

305

310

305

330

315

250

330

315

250

250

275

310

275

310

305

330

315

320

305

330

315

320

290

325

325

3|Page

Safa Eristi

305

275

330

250

315

l 320 | 100

290

310

275
330 305

250

315

290
310

Sec03

325

320

325

100

275

250

275

250

305

330

290

305

330

290

310

180

N
m

320

325

100

100

275

180

275

180

305

330
150

£

l 290

250

315

310
320

om

305

330

290

250

150

100

180

150

100

180

305

275

250
| -

310

305

310

325

100

305

150

170

180

310

oM

305
325

150
275

170

250

310
325' 320 | 315 |§ 290 || 3

180

00

n

140

180

140

180

150

170

310

210

325

4|Page

Safa Eristi

Sec03
reovs 100
180 140 155 140
310 e 170 180 250 170
IEA 320 || 315 f 290 | | 330 | | 275 305 | | 210 310 | 320 |§ 315 | 290 |} 330 || | 275 305 || 210
175 325
100 100
140
0

180 250 170 150 170 150
mjizao ” 330 ” 275 I Iaas " ziol IgTsl 290 “ 0 ” p I l 305 Im

b)Output 100; 311>100; so Insert the newcomer to the root of the current priority queue.
The priority queue becomes;

140

175 150

/A

|—|1 o 250 170 210
320

35 290

Y
330 275 [0S N

205

/N

325 =10

The output segment;

(woof | | [[[P PP T [[| |

Output 140; 276>140; so Insert the newcomer to the root of the priority queue.
The priority queue becomes;

5|Page

Safa Eristi

Sec03

173

/

\

1350

180 250
203 320 35 290

/ N\

325 =10

The output segment;

330

170

210

76

305

T
31

1100|140 | |

Output 150; 110<150; so newcomer goes to the new priority queue.

New queue

110

180

[2TE &
‘205 Hazu H315 | i

|205 ‘ ‘320 |‘315 | ‘290 |

6|Page

3

becomes;

Safa Eristi

Sec03
The output segment;

(100[240f1s0 [| [[[[[[[[[| [[[[|
110

Output 170, 176>170, so insert the new comer to the root of the current priority queue.

175

176

210

180 | 250 275 305

AR IR

1)
L7
205 320 ||z1s | [z90 330 10 A1 New queue

/ |

F25

110

The output segment;

wojwofsofazo] | [[[[[[| | | | | [[[|
110

Output 175, 261>175, so insert the newcomer to the root of the current priority queue.

2 305
/ \ / \ - New queue
[27E
261 |32|:| ||315 | |29|:| | 330 Fm | M
325 I
110

The output segment;

7|Page

Safa Eristi

Sec03
100f140]150f170fa7s| | [[[[| | | [[[[| |
110

Output 176, 321>176, so Insert the newcomer to the root of the current priority queue.

180

r203

261 250 275 305

AN N

1
[X7E 310
521 320 |[31s | [2e0 330 1
/ New queue
325 T

110

The output segment;

100|140 150]170f17sfaze| | [| [| [| [| [| [|
110

Output 180, 212 >180, so insert the newcomer to the root of the current priority queue.

ﬁﬁi_lﬁ““‘““*-ﬁﬂu_ﬂ

210

212

261 250 75 305

/N[N

521 320 35 290

/ New queue
323 I

110

1)
330 276 510 311

8|Page

Safa Eristi

Sec03
The output segment;

100

140

150 | 170 | 175 | 176 | 180 | 205 | 210 | 212 | 250 | 275 | 261 | 275 | 276 | 305 | 310 | 311 | 315

320

321

330

325

110

Answer 5.

a)

We sort the files first. We sort the M1 file with 100-way merge, and sort M2 file with
20- way merge and we open an area on the disk called “common”

Since we have 10Mb of memory,we read SMb of M1 file and 5Mb of M2 file to the
memory.

Than, we read SMb of the M1 file and SMb of the M2 file to the memory.

We compare the M1 and M2 and whenever we find duplicate records in we write them
to “common” file.

Process goes like;

Take SMB of M1 Compare with every SMB of M2,

Take another SMb of M1 Compare with every SMb of M2

b) Sorting M1 and M2 takes 31 minutes and 70 seconds(Calculation made on the c) part of
this question)

For M1 we will go to the disk everytime we want to take a SMb piece, so
b * ebt = (5000000)/2400 * 0.84 +(16+8.3) also we have seek and rotational latency time
this is for one SMb piece and it equals to = 1774.3 ms = 1.7 seconds.

We do this for 200 times, so 200 * 1.7 = 340 seconds

For ever 5SMb of M1 we compare with 5SMb of M2. This means that we take all of M2
to the memory 200 times.

First we calculate bringing M2 to the memory.
b * ebt = (5000000 / 2400) * 0.84 +(24.3) = 1.7 seconds
there are 40 piece of SMb pieces, so 1.7 * 40 = 68 seconds

We take M2 200 times, so 68 * 200 = 13600seconds = 226minutes.

Finally there is time to write the common file to the disk.It equals to approximately 4seconds.
So Therefore we have 13600 + 68 + 350 + 70 + 1860 + 4 = 4.43 hours

9|Page

Safa Eristi

Sec03

c)
Without sorting, finding the combined mailing list would take years. So, we definiatly
should sort the files first.

Since we have 10Mb of memory, we sort the M1 file with 100-way merge, and sort
the M2 file with 20-way merge.

Than, we read SMb of the M1 file and 5Mb of the M2 file to the memory.

First we write SMb of M1 that we took to memory, to the another area called ’union”
and then we start to compare the two SMb pieces. Whenever we find nonduplicate records in
M2 we write them to union file.

Process goes like;

Take SMB of M1 Compare with every SMB of M2,

Take another SMb of M1 Compare with every SMb of M2

d) First, sorting M1 and M2;
4b * ebt +2 * 100" 24.3 = 31minutes for M1
It takes 70 seconds to sort M2.
Now for comparisons
For M1 we will go to the disk everytime we want to take a SMb piece, so
b * ebt = (5000000)/2400 * 0.84 +(16+8.3) also we have seek and rotational latency time
this is for one SMb piece and it equals to = 1774.3 ms = 1.7 seconds.

We do this for 200 times, so 200 * 1.7 = 340 seconds

For ever 5SMb of M1 we compare with 5SMb of M2. This means that we take all of M2
to the memory 200 times.

First we calculate bringing M2 to the memory.

b * ebt = (5000000 / 2400) * 0.84 +(24.3) = 1.7 seconds

there are 40 piece of SMb pieces, so 1.7 * 40 = 68 seconds

We take M2 200 times, so 68 * 200 = 13600seconds = 226minutes

Finally there is time to write the union file to the disk.
It takes approximately 35 seconds.

Therefore we have 13600 + 68 + 350 + 70 + 1860 + 35=4.44 hours

10|Page

