

b) Two disk accesses are needed: it is not in the prime data area so we follow the link and it is in the first overflow bucket.

Time = (s+r+bt) + (s+r+dt) = 2x24.3 + 0.8 + 0.8 = 50.2 milliseconds

c) 1 disk access is needed to retrieve 3^{rd} bucket which contains the records 5 and 32. So, another look is not necessary. As a result, 1 disk access is needed to retrieve the record 32. Time = (s+r+btt) = 24.3 + 0.8 = 25.1 milliseconds

d) There are 3 buckets in the prime data area. 2 of them have one overflow bucket additionally. For each of these two buckets, 2 disk accesses are needed for an unsuccessful search. The other bucket requires only 1 disk access for an unsuccessful search. Totally, there are 5 disk accesses and 3 buckets. Then, the average number of accesses for an unsuccessful search is 5/3 = 1.67

2) Table for mod(key, 17)

10	01010			
20	00011			
3	00011			
7	00111			
13	01101			
14	01110			
18	00001			
21	00100			
25	01000			
16	10000			
38	00100			
30	01101			
37	00011			
35	00001			
23	00110			

Bkfr = 3

Desired Lf = 2/3

0		bv = 0	D, $h = 1$
1			

<u>Add 10</u>

$$bv = 1 h = 1$$

 $6/9 = 2/3 = Desired Lf \rightarrow Add 2$ records and update

<u>Add 18, 21</u>

Update

00	21			
01	13	18		
10	10	14		
11	20	3	7	

$$bv = 2$$
, $h = 1 \rightarrow bv = 2^h \rightarrow bv = 0$, $h = 2$

$$8 / 12 = 2/3 =$$
 Desired Lf \rightarrow Add 2 records and update

<u>Add 25, 16</u>

00	21	25	16	bv = 0, h = 2
01	13	18		
10	10	14		
11	20	3	7	

Update

000	25	16	
01	13	18	
10	10	14	
11	20	3	7
100	21		

bv = 1, h = 2

10/15 = 2/3 =Desired Lf \rightarrow Add 2 records and update

<u>Add 38, 30</u>

000	25	16	
01	13	18	30
10	10	14	
11	20	3	7
100	21	38	

Update

000	25	16		bv = 2, h = 2
001	18			
10	10	14		
11	20	3	7	
100	21	38		
101	13	30		

12/18 = 2/3 =Desired Lf \rightarrow Add 2 records and update

<u>Add 37, 35</u>

Update

bv = 3, h=2 $14/21 = 2/3 = Desired Lf \rightarrow Add 2$ records and update

<u>Add 23</u>

bv = 3, h=2

Another record is necessary before an update operation.

- 3) a) $2^h bv = 13$ blocks hashed at level h = 4
 - b) 2*bv = 6 blocks hashed at level h + 1 = 5
 - c) 10010 is the address of the last bucket of the file
 - d) 1111 is the address of the last bucket of the file hashed at h

e) mod(54,37) = 17 = 10001 b

 $0001 < bv \rightarrow$ the following bit is taken which is 1

now the pseudo key equals to 10001 b.

The number of bucket which contains 54 is 10001.

4) a) 1024 - 200 = 824 blocks hashed at level h = 10

b) 200x2 = 400 blocks hashed at level h+1 = 5

- c) 10011000111 is the address of the last bucket in the file.
- d) 11111 11111 is the address of the last bucket of the file hashed at level 10.
- e) mod(5178, 2039) = 1100 d = 10001001100 b

00010 01100 < bv, so the following bit is taken which is 1.

Then, the pseudo key is 10001001100.¹

¹ Solutions are due to Sefa Şahin Koç (Övünç Sezer hw is used for double checking.