
Hilal Güler January 4, 2012
20700564
CS351/3

1

CS 351 DATA ORGANIZATION AND MANAGEMENT
Homework 4

1) In an extendible file environment, the number of entries is 2k where k is the first

number of digits that are used to find the correct entry in the table. In other words, k

can be referred as the level of the index as well.

In the question,

 pseudo keys are obtained by mod(key, 5693)

 R (record size) = 400 bytes

 Disk Block Address representation (pointers) requires 4 bytes.

 Block Size = 2400 bytes (the parameter/value of IBM 3380)

a) The maximum memory requirement of the file directory is obtained as follows: The

value 5693 is between 212 and 213. Since the size of extendible-hashing tables is

always a power of 2, we assume the table size to be 213. Thus the index takes 213 x 4

bytes of storage for pointers and the table in total takes: 213 x 13 bits + 213 x 4 x 8 bits

= 213 x 45 bits = 210 x 45 bytes = 45 KB.

b) Normally, we do not have any overflow pages in extendible hashing. However, it is

possible to have overflow blocks in an extendible file environment as follows: If the

entries all have the same hash value and although we double the directory size, the

entry still wants to go to the bucket where there is no space. In that manner, the file

directory continues to double and when it reaches its maximum size, it starts to have

overflow buckets in order for the entries to be placed. The example for this case will

be as follows: Assume IBM 3380 environment and each bucket includes 2400/400 = 6

records. There are 7 entries that have the same hash value; i.e. the same data-bucket

address which is 0 for instance. Then, ith level of the data bucket equals the kth level

of the index. In this case, although the directory size is doubled, all entries need to go

to the same index, and the directory size reaches the maximum value. At this point,

overflow buckets are formed and the values are distributed through those overflow

bucket in the index where overflow occurred.

c) The maximum file size in terms of number of records can be obtained as follows: In

the maximum file size calculation, 5693 entries will each have one bucket (page) and

each bucket will have 2400/400 = 6 records (According to IBM 3380 parameters).

Therefore, in total it makes 5693 x 6 = 34,158 records.

Hilal Güler January 4, 2012
20700564
CS351/3

2

2) In an extendible hashing file with d (directory level) equal to 4, the minimum and

maximum number of pages with p (page hashing level) equal to 1, 2, 3, 4 and 5.

d = 4
(directory
level)

Minimum number of pages Maximum number of pages

p = 1
(page hashing
level)

In minimum case, there is no page
with p=1, for example all pages
may have page hashing level as 4.
Then since d = 4, all pages are with
the value p = 4, there will be no
pages with p = 1. Therefore the
minimum number of pages with
p=1 is 0.

2d-p is the number of links pointing
connected to a page. When p is 1, the
leftmost bit (prefix 1) will be used for
distinguishing the entries. There are 24
entries in the table and the first 8 of them
links to page 1 and the last 8 of them links to
other pages with p>1. Therefore the
maximum number of pages with p=1 is 1.

p = 2
(page hashing
level) = 2

In minimum case, there is no page
with p=2, for example all pages
may have page hashing level as 4.
Then since d = 4, all pages are with
the value p = 4, there will be no
pages with p = 2. Therefore the
minimum number of pages with
p=2 is 0.

2d-p is the number of links pointing
connected to a page. When p is 2, the
leftmost two bits (prefix 2) will be used for
distinguishing the entries. There are 24
entries in the table and the first 12 entries
will point to 3 pages with p=2. Each page
with p=2 will get 4 links pointing to it.
Therefore, the maximum number of pages
with p=2 is 3.

p = 3
(page hashing
level)

In minimum case, there is no page
with p=3, for example all pages
may have page hashing level as 4.
Then since d = 4, all pages are with
the value p = 4, there will be no
pages with p = 3. Therefore the
minimum number of pages with
p=3 is 0.

2d-p is the number of links pointing
connected to a page. When p is 3, the
leftmost three bits (prefix 3) will be used for
distinguishing the entries. There are 24
entries in the table and the first 14 entries
will point to 7 pages with p=3. Each page
with p=3 will get 2 links pointing to it.
Therefore, the maximum number of pages
with p=3 is 7.

p = 4
(page hashing
level)

In minimum case, there are at least
two pages with p=4. For example,
the first 8 indexes point to page
with p=1, the next 4 indexes point
to page with p=2, the next two
indexes point to page with p=3.
Then the last two indexes each
point to pages with p=1. Since the
doubling occurs when there is an
overflow in the page, at least two
pages with p=d=4 will appear.
Therefore the minimum number of
pages with p=4 is 2.

2d-p is the number of links pointing
connected to a page. When p is 4, all of the
4 bits (prefix 4) will be used for
distinguishing the entries. There are 24
entries in the table and the first 16 entries
will point to 16 pages with p=4. Each page
with p=4 will get 1 link pointing to it.
Therefore, the maximum number of pages
with p=4 is 16.

p = 5
(page hashing

It is not possible to have a page
with p>d, because d indicates the

It is not possible to have a page with p>d,
because d indicates the directory level and p

Hilal Güler January 4, 2012
20700564
CS351/3

3

level) directory level and p indicates the
page hashing level (the number of
prefixes that will be used to
identify the elements in the
corresponding page). We cannot
identify 4 bit index with 5 prefixes.
Minimum value: 0

indicates the page hashing level (the
number of prefixes that will be used to
identify the elements in the corresponding
page). We cannot identify 4 bit index with 5
prefixes.
Maximum value: 0

3)

Insertion Contents of B Tree of degree (order) 1 after insertions

Insert 12:

Insert 14:

Insert 7:

Insert 9:

Insert 16:

Insert 6:

Insert 4:

Hilal Güler January 4, 2012
20700564
CS351/3

4

Insert 11:

Insert 10:

4)

Insertion Contents of B+ Tree of degree (order) 1 after insertions

Insert
14:

Insert 7:

Insert 9:

Insert 5:

Insert
15:

Hilal Güler January 4, 2012
20700564
CS351/3

5

Insert 3:

Insert 1:

Insert 6:

Insert
12:

Hilal Güler January 4, 2012
20700564
CS351/3

6

Insert 4:

Insert
11:

Insert
10:

Insert
16:

Hilal Güler January 4, 2012
20700564
CS351/3

7

5) a) Time needed to find the average account balance with B+ trees in which the data

nodes are not connected to each other can be calculated as follows:

key size = 8 bytes

pointer size= 4 bytes

fo= (2400/12)x0.7= 140 (we can assume this value as fan out using Salzberg’s values)

n: no. of records

bk: no. of data nodes

bk= n/(2 x d x 0.7) , ln2= 0.7 (approx.)

No. of disk accessed in order to find the average can be approximated as 2 x bk;

however this is not a good estimate since when we access an index node in the disk it

will be kept in main memory by the operating system as long as we need it. Recall

that each index node has fan out number of data node pointers and therefore by

each index node we will be able to access (point to) fo no. of data nodes. By this

observation a much more accurate estimation for the number of disk accesses is

bk/fo + bk.

The calculation of the average includes exhaustive reading of the file, i.e. TX.

In IBM 3380 environment, bucket size is 2400 bytes => Bkfr = 2400/400 = 6

TX = (bk/fo) x (s+r+btt) + bk x (s+r+btt)

of data nodes(bk) = 200,000/(ln2 x Bkfr) = 200,000/(0.7 x 6) = 47,619 (According to

Yao, on the average each data node is 70% full, that is why we have divided the

number of records by 0.7 as well)

Therefore, the time for finding the average account balance becomes:

TX = 47,619 / 140 x (16 + 8.3 + 0.8) + 47,619 x (16 + 8.3 + 0.8) = 1,203,774 msec =

1,203 sec = 20 minutes

TF = s+r+btt+s+r+btt = 2s + 2r + 2btt = 50.2 msec

TN = 1 / (Bkfrxln2) x [(s+r+btt) + 1/fo x (s+r+btt)] = 25.1/4.2 x (1+1/140) = 6 msec

(with 1/(Bkfrxln2) probability, the next record will not be in the same data bucket

with the one we have already read and with 1/fo probability we need to access

another index node while accessing different data node than we have read)

b) Time needed to find the average account balance with sequential files can be

calculated as follows:

The calculation of the average includes exhaustive reading of the file, i.e. TX.

In IBM 3380 environment, bucket size is 2400 bytes => Bkfr = 2400/400 = 6

of data blocks = 200,000 / Bkfr = 200,000/6 =33,334

TF = b/2 x ebt = 33,334/2 x 0.84 = 14,000 msec = 14 sec

TN = TF = 14 sec

TX = s + r + b x ebt = 16 + 8.3 + 33,334 x 0.84 = 28,025 msec = 28 sec

Hilal Güler January 4, 2012
20700564
CS351/3

8

6) 10 MB of memory are available and Salzberg calculates the number of data buckets

that can be accessed with a sparse (primary) B+ tree with the leaves and the parent-

of-leaf level on disk, and all levels above the parent-of-leaf level are kept in memory.

Also, Salzberg makes the assumption that the index (internal) nodes of the B+ tree

are one block (page 150).

 We have Leaf node size = 2400 bytes

 Available memory = 10 MB

 R (record size) = 400 bytes

 Bkfr = 2400/400 = 6

 Degree of index nodes = 80

 average fan-out = 80 x 2 x 0.7 = 112

Using bottom-up approximation, for the number of leaf nodes (data buckets) bk,

bk/fo number of parent-of-leaf level of the index is needed. Salzberg assumes that

there are at most three levels above the parent-of-leaf level which can be seen in

Figure 1 and that the number of blocks above the parent-of-leaf level is: bk/(fo)2 +

bk/(fo)3 + 1

Figure 1: A B+ tree with three levels in memory

With 10 MB available memory, (10x106) / 2400 = 4167 index blocks can be kept,
therefore if we solve the equation we get: 4167 = bk/(fo)2 (we can neglect the space
needed above the parent-of-parent-of-leaf level)
Then bk = 4167 x (112)2 = 52,266,667 and now we can find the number of records:
n = bk x ln2 x Bkfr = 52,266,667 x 0.7 x 6 = 219,520,000 records approximately.

