CS 351 DATA ORGANIZATION & MANAGEMENT

FALL 2011

QUIZ 4/ SECTION-1

(Date given: November 24, 2011)

Consider extendible hashing with bkfr = 3

Key	Mod(key, 32)	Binary Pseudo key
70	6	00110
46	14	01110
39	7	00111
24	24	11000
34	2	00010

<u>Rules:</u>

- If a bucket whose local depth is equal to the global depth is split, the directory must be doubled.
- Whenever a bucket is split, increment the local depth of the split bucket and its split image by 1.

Add 70, 46, 39

QUIZ 4/ SECTION-2

(Date given: November 30, 2011)

Consider extendible hashing with bkfr = 2

Key	Mod(key, 32)	Binary Pseudo key
34	2	00010
24	24	11000
39	7	00111
46	14	01110
70	6	00110

<u>Add 39</u>

QUIZ 4/ SECTION-3

(Date given: November 23, 2011)

1- Linear Hashing

n = 8

- What is by and h?
- What is the number of pages at level h? Also give the page numbers.
- What is the number of pages at level h + 1? Also give the page numbers.

Solution:

$$\mathbf{h} = \lfloor \lg \mathbf{n} \rfloor = \lfloor \lg 8 \rfloor = \lfloor \lg 2^3 \rfloor = 3$$

 $bv = n - 2^h = 8 - 2^3 = 0$

The last page at level h is 7 $(2^3 - 1 = 7)$

 \Rightarrow Therefore, there are 8 pages at level h (i.e., pages between 000 and 111)

The number of pages at level h + 1 is calculated as follows:

$$f(bv) = 2 * bv = 2 * 0 = 0$$

(or, 8 (total num.pages) - 8 (num.pages at level h) = 0 (num.pages at level h+1)) The number of pages at level h+1 is 0.

2- Linear Hashing

n = 21

- What is by and h?
- What is the number of pages at level h? Also give the page numbers.
- What is the number of pages at level h + 1? Also give the page numbers.

Solution:

$$\mathbf{h} = \lfloor \lg \mathbf{n} \rfloor = \lfloor \lg 21 \rfloor = \lfloor \lg 2^{4, \dots} \rfloor = 4$$

$$bv = n - 2^h = 21 - 2^4 = 5$$

The last page at level $h \Rightarrow 2^4 - 1 = 15$

 \Rightarrow Therefore, there are 11 pages at level h (i.e., pages between page 5 and page 15)

The number of pages at level h + 1 is calculated as follows:

f(bv) = 2 * bv = 2 * 5 = 10 (or as an another way, you can calculate as 21 - 11 = 10). Page numbers at level h+1 are between 00000-00100, and 10000-10100. **3-** Consider linear hashing with bkfr = 2 and lf = 1/2

Initially, we have 2 buckets and h = 1

Add the following records: 25, 28, 5, 17, 34

- 25 011001
- 28 011100
- 5 000101
- 17 010001
- 34 100010

Solution:

At each time after reaching the target load factor, insert (Lf*Bkfr) record(s) and update the file.

Target Load Factor = 1/2Lf*Bkfr = 1/2 * 2 = 1Bkfr = 2Add 1 record and update the file

<u>Add 5</u>

<u>Add 17</u>

Update:

<u>Update:</u>

