CS 533 - Information Retrieval Systems - Homework V

Alican Biytikgakir
alicanbuyukcakir@bilkent.edu.tr

due 28.12.2017

1 Maximal Marginal Relevance

MMR is defined as follows:

MMR = argmax[\ s(d;,q) — (1 — A) max{s(d;,d;)}]
di€R-S d;es

And in the question, we are given:

s(q,dy) = 0.80
s(q, da) = 0.70
s(gq,ds) = 0.40
s(q,dy) = 0.60

Initially, our result set S is always empty. Therefore, we pick d; as our first element to S no matter
what. After each part, the corresponding diversity value is found by the following formula:

. 1
div(S)=1-— YIS Z s(d;, d;)
(5 Vd;.d;

(a) When X\ = 1:

When A\ = 1, diversity term is always zero. We only care about the similarity of the documents w.r.t.
the query.

MMR(A =1) = argmax s(d;, q)
d;€R—S

We firstly pick dy, since s(q,d;) = 0.80 and it is the largest. dy follows that with s(g,d2) = 0.70. Hence,
as a result, S = {d;,ds}.

Corresponding diversity value div(S) =1 — s(dy,d2) =1 — 0.67 = 0.33

(b) When X = 0:

When A = 0, this time the relevance term is zero and the diversity term dominates.

MMR(A=0) = argmax[—max{s(d;,d;)}| = argmin max{s(d;,d;)}
di€R—S d;€S d;€R—S d;€S

Firstly, S is empty, we pick d; as it is the most relevant to the query. Then, to maximize the diversity
term in MMR, we minimize the negative similarity (comparing all docs with S = {d;}). We have:
s(d1,d2) = 0.67, s(dy,d3) = 0.50 and s(dy,ds) = 0.20. We pick the smallest among these, which will
make the whole equation maximum. That element is dy. The resulting set is S = {d1,d4}.

Corresponding diversity value div(S) =1 — s(dy,ds) =1—-0.2=0.8

(c) When \ = 0.5:

When A = 0.5, we give equal importance to the relevance term and the diversity term.

MMR(A=0.5) = 3%21?;‘[(0'5) s(di,q) — (0.5) g}g{g{b’(di, d;)}]

Initially, we pick d; again. Then:

MMR(S + ds) = (0.5)(0.70) — (0.5)(0.67) = 0.015
MMR(S + ds) = (0.5)(0.40) — (0.5)(0.50) = —0.05
MMR(S + dy) = (0.5)(0.60) — (0.5)(0.20) = 0.20

Therefore, we pick dy which has the bigger MMR. Resulting set is S = {d1, d4}.
Corresponding diversity value div(S) =1 — s(dy,ds) =1—-0.2=0.8

(d) Including the Third Document to S

e When A = 1: We had S = {dy,d2}. Again, looking at the most relevant document only, we
pick dy since s(q,d4) > s(q,ds). Resulting set is: S = {d1,ds,ds}. Corresponding diversity value
div(S)=1- %(0.67 +0.204+0.10) =1 — 0.323 = 0.677.

e When A = 0: We had S = {dy,ds}. This time, we will pick the document that will increase
the maximum similarity among S the least. When ds is included to S, we get MMR value of
—0.67 whereas when dj3 is included to S, we get MMR value of —0.50. We pick d3. Resulting set is
S = {dy,ds,ds}. Corresponding diversity value div(S) = 1—£(0.504-0.20+0.0) = 1-0.233 = 0.767.

e When A\ =0.5: We had S = {dy,ds}. Let’s look at the possible actions:
MMR(S + ds) = (0.5)(0.70) — (0.5)(0.67) = 0.015

MMR(S + ds) = (0.5)(0.40) — (0.5)(0.80) = —0.2

Hence, we pick dy which has the bigger MMR value. Resulting set is S = {d;,d3,d4}. Correspond-
ing diversity value div(S) =1 — %(0.67 +0.204+0.10) =1 —0.323 = 0.677

Considering the results of all parts and the diversity values that are obtained by the definition of diversity
we are given, we can claim that MMR does its job, as decreasing A constant actually increases the diversity
of the resulting sets while decreasing the relevance (accuracy) of the resulting set.

2 Performance Evaluation for Diversification
(a) S-Recall

S-Recall@N is the fraction of unique meanings covered at first N documents. By this definition,

S — Recall@Qb = - =1

S — Recall@10 = - =1

@‘QGHCD

(b) Intent-Aware Precision

Precision-IAQN is the number of meanings covered at first N documents divided by all possible meanings
that can be covered at first N documents. By this definition:

1,11 1 1 1 2 7
PIA@QS = —(-4+-+-+-+-+-)=—=0.233
6(5+5+5+5+5+5) 30

1.2 2 2 2 2 2 1
PIAQI0 = —(= 4 — 4 = 4 = 4 = T
RS TR TR TR TSR -

3 Data Fusion

Throughout the questions, the symbol > is used to indicate a document’s rank is better, i.e. a document
is ranked higher. a > b means that document a is ranked higher than document b.

(a) Reciprocal Rank

Reciprocal Rank for document i is defined as follows:

1
- 1
29 vy

where 7;; is the rank of document 7 in the system j. Also, if a document does not exist in a ranking list,
then its corresponding term in the denominator is zero. Here are the reciprocal ranks for all documents:

RR(d;)

1 4
RR(a) = = = 0.444
ptati+tr 9

1 1
RR(b) = ————— = = = 0.333
Iylilio0 3
1 4
RR(c) = - =2 2080
Z+0+§+§ 5
1 3
RR(d)= —————— = > =0.75
stststs 4
1
RR(e)= — =4
0+0+0+1
1
RR()

0+37+0+0

According to Reciprocal Ranks, we have: b >a >d >c>e = f.

(b) Borda Count

In Borda Count, the highest ranked document gets n vote in an n-way vote scenario. Having 6 different
documents, the highest ranked document in a system will get 6 votes, and the next 5 votes etc. Non-
ranked documents share the remaining votes evenly [1]. Borda Count of a document is the sum of all
Borda Counts throughout all systems.

BO(d;) = 3 BO(d:)
Vj
Borda Counts for all documents:

BC(a)=5+5+3+6=19
BO(b) =6+6+6+15=195
BO(c)=3+1.5+5+5=145

BO(d)=4+4+4+4=16
BC(e
BC(

)=15+15+15+3="75
f)=154+3+15+15="175

According to Borda Counts, we have: b >a >d>c>e=f.

(c) Condorcet

In Condorcet, we count how many times a document won, lost or tied versus another document. We put
those into a matrix and sort documents according to how many times in total a document won versus
another documents (when tie, look at number of losses) to get our rankings.

The matrix:

Table 1: Condorcet Win-Lose-Draw Table for Documents

a b c d e f
a | - (1,3,0) | (3,1,0) | (3,1,0) | (4,0,0) | (4,0,0)
b | (3,1,0) | - (3,1,0) | (3,1,0) | (3,1,0) | (3,0,1)
c | (1,3,0) | (1,3,0) | - (2,2,0) | (3,0,1) | (3,1,0)
d | (1,3,0) | (1,3,0) | (2,2,0) | - (4,0,0) | (4,0,0)
e | (0,4,0) | (1,3,0) | (0,3,1) | (0,4,0) | - (1,1,2)
f | (0,4,0) | (0,3,1) | (1,3,0) | (0,4,0) | (1,1,2) | -

And the table that shows how many times a document won/lost/tied:

Table 2: Condorcet Count Results

WIN | LOSE | TIE

[R Bd Bl K==l K =)

~=lolalo|o|e
ol oo | ot s
A o] o] o] —

Hence, according to Condorcet Count, we have: b >a >c=d > e = f.

4 Signature Files

For 512,000 objects, each one having a signature of size 1024 bits (128 bytes), we will have same signature
file in terms of size for both Sequential and Bit-Sliced Signature files. The difference will be the way they
are put to the memory: the former is put in row-major order whereas the other one in column-major
order.

e Size for Sequential Signatures (SS): 512k x 128 bits = 64 MB.
e Size for Bit-Sliced Signatures (BS): 512k * 128 bits = 64 MB.

5 Number of Page Accesses

Page size is 0.6 KB = 512 bytes = 4,096 bits. Since each signature has 1024 bits, a page can hold

‘118% = 4 signatures in SS. On the other hand, each column has 512,000 bits in Bit-Sliced Signatures,

512,000 _ .
1006 — 125 pages to store one column in BS.

which means that we need

e Number of Page Accesses for Sequential Signatures (SS): We need to access all pages to
check whether the query signature and the the block signatures match (AND’ing results on Qs).
We have 512,000 signatures, and pages can contain 4 signatures. Therefore:

512,000
PAss = ——— = 128,000

e Number of Page Accesses for Bit-Sliced Signatures (BS): We need to access all the columns
that correspond to the bit position that is 1. Hence, we need to access 5 columns, each one consisting
of 125 pages.

PAps =125%5 =625

6 Fixed Prefix with k£ =2

For the given signatures, when FP with k = 2 is applied, we get the following buckets:
Table 3: Partitions as a result of Fixed Prefix with k = 2

Partition |00 |01 |10 | 11
Signatures | S5, S8 | S1, S2 | S6, S7, S9, S10 | S3, 54

Consider the following queries for the upcoming parts of this question:
e QI: 1110 0001
e Q2: 0110 0011
e Q3: 1100 1100

(a) PAR and SAR values

The partition is to be accessed if ANDing Query signature’s prefix with our prefix yields query’s signature.
Partition Activation Ratio is the number of partitions to be accessed over all partitions. Signature
Activation Ratio is the number of signatures to be accessed in the partitions over all signatures.

e For Q1: It starts with 11. Only possible partition it can go is 11.
e For Q2: It starts with 01. It can go to both 01 and 11.

e For Q3: It starts with 11. Only possible partition it can go is 11.

Table 4: PAR and SAR Values

Query | Q1 Q2 Q3
PAR | 1/4 2/4 1/4
SAR | 2/10 4/10 2/10

(b) Avg Turnaround Time for Sequential and Parallel Processing

I assume that each access to a partition takes a unit time. We will spend 1 unit time to process Q1, 2
units of time for @2 and 1 unit of time for 3. Also, I assume that the queries come to the system at
t =0, in the given order (Q1, Q2, Q3).

e Sequential Processing:

Query: [Q1 | Q2 [Q3]
tend : 1 3 4

Hence, Avg Turnaround Time for Sequential Processing is:

1 8
ATT(Seq) = Avg(tend — tarrival) = §((1 -0)+3B3-0)+(4-0) = 3= 2.666

e Parallel Processing: PF(XX) represents the Parallel Processing Engine that is responsible for
the queries that correspond to prefix X X.

00
01
10
11

~— | — | — |~

TTTT

PE(
PE(
PE(
PE(

tend :
Hence, Avg Turnaround Time for Parallel Processing is:

ATT(PG/I") = Avg(tend - tarrival) = é((l - 0) + (2 - O) + (3 — O)) = g =2

Speed-up ratio is how much we sped-up the process by using parallel processing.

ATT 4
(Seq) _ 8/3 _ 4 _ | 4ag

SUR = ATT(Par) 2 3

7 EPP and FKP (Lee and Leng 1989 paper)

According to Table 5, the partitions and the signatures in them are as follows:

(a) Extended Prefix Partitioning (z=2)

In EPP, we form the partitions according to the bits until a specific number of zeroes is seen. In this
case, z = 2, which means we create partitions from the signatures until we see 2 zeroes [2].

Table 5: EPP and FKP Partitions for the Given Signatures

S Signatures | Partitions according to... | EPP (z=2) | FKP (k=2)
S1 0110 1010 — 0110 01-1
S2 0100 0110 — 010 00-3
S3 1110 0011 — 11100 00-5
S4 | 1100 0011 — 1100 00-3
S5 | 0011 1010 — 00 00-1
S6 | 1010 0101 — 1010 10-1
S7 1011 0010 — 10110 00-5
S8 0000 1111 — 00 00-1
S9 | 1010 0110 — 1010 10-1
S10 | 1011 0100 — 10110 00-7

Table 6: Partitions as a Result of EPP

Partition |00 | 010 | 0110 | 1010 | 10110 | 1100 | 11100
Signatures | S5, S8 | S2 | S1 | S6,S9 | S7,S10 | S4 | S3

(b) Floating Key Partitioning (k=2)

In FKP, we are examining each consecutive non-overlapping k-substrings in the signatures to create out
partitions. Leftmost substring with smallest weight is chosen as a key. Since k = 2, we are looking for
2-substrings in the signatures. Therefore, we need to look at the occurrences of 00s and denote in which
bit we encountered the zeroes. If we cannot find any, we look at the first 2 bits, which has to be either
01 or 10. We also denote those with the index they are seen, which is 1 [2].

Table 7: Partitions as a Result of FKP

Partition | 00-1 | 00-3 | 00-5 | 00-7 | 01-1 | 10-1 |
Signatures | S5, S8 | S2,54 | S3,S7 [S10 | S1 | S6,S9 |

(c) Pages that Need to be Accessed for EPP and FKP

1. For EPP: AND the variable-sized prefix of our queries with possible partition prefixes. If the
result is the query’s prefix, then access that page.

e Q1: 1110 0001. AND’ing this query with only the partition 11100 yields the query’s prefix
itself. Hence, we access to only that partition.

e Q2: 0110 0011. AND’ing this query with partitions 0110 and 11100 yields the query’s
prefix itself. Need to access 2 partitions.

e Q3: 1100 1100. AND’ing this query with partitions 1100 and 11100 yields the query’s
prefix itself. Need to access 2 partitions.

2. For FKP: For each query, look at the first 2 bits and search for 01 or 10. Otherwise, look at the
nonoverlapping consecutive 00s.

e Q1: 1110 0001. Need to access 00-5 partition only.
e Q2: 0110 0011. Need to access 01-1 and 00-5 partitions. Two of them.
e Q3: 1100 1100. Need to access 00-3 and 00-7 partitions. Two of them.

As a result, we needed to access 5 partitions in both of the partitioning methods.

8 Linear Hashing Using Suffixes (Quick Filter)

When the LF is reached, we add Bkfr x LF = 3 x % = 2 more documents and then re-distribute the
current page by adding one more page to the end of the file and one more bit to the representation of

the page.

Table 8: Iterations of Quick Filter

0 S1 S2 The first 4 docs are added. LF is reached.
1 S3 S4 Add 2 more blocks: S5 and S6.

bv — 0 S1 52 | S5

1 S3 S4 | S6 Now distribute! Increment bv.
00
bv — 1 S3 S4 | S6 LF is reached.
10 S1 S2 | SH Add 2 more blocks: S7, S8.
00
bv - 1 S3 S4 | S6 | - | S8 Now distribute! Increment bv.
10 | S1 S2 | S5 | - | ST bv will be power of two. Reset!
bv — 00
01 S6
10 | S1 S2 [S5 |- [S7] | | LF is reached.
11 S3 S4 | S8 Add 2 more blocks: S9 and S10.

bv — 00 S10

01 S6
10 | S1 S2 | S5 —]87\89\\
11 S3 S4 | S8 Now distribute!
000
bv — 01 S6
10 | S1 S2 | S5 —]S?\SQ\\
11 S3 S4 | S8
100 | S10 End.

For a query to access to a page, we look at the k-suffix of the query. If it does not exist in our page
table, we increase k, until we have the same-sized suffixes in our table. Then, we again AND the query
signature suffix with table signature. If the result is the query suffix, then we try that block.

e For Q1: First valid suffix is 01. Therefore, possible pages to be accessed are: 01 and 11.
e For Q2: First valid suffix is 11. The only possible page to be accessed is 11.

9 Information Filtering Using Ranked Key Method

Ranked Key Method is as follows: We create the directory for each highest-ranked document in the
profiles. For each highest-ranked document, we create its postings list consisting of elements that has (1)
Profile Name, (2) The number of preceding docs after that document, (3) The list of preceding documents
for that profile [4]. Hence, the resulting directory with the inverted index structure is as follows:

Table 9: Directory and Inverted List Structure

Directory Inverted Lists
[a]o | = [P1]5[b,cdef[[P2[3][bef] [P5][2]cf]

> [P3[2] ol [[Pi[2[d T |

ool T
<[e <) 4| @

References

Nuray, Rabia and Can, Fazli. Automatic Ranking of Information Retrieval Systems Using Data
Fusion. Information Processing & Management 42.3 (2006): 595-614.

Lee, Dik Lun, and Chun-Wu Leng. Partitioned signature files: Design issues and performance
evaluation. ACM Transactions on Information Systems (TOIS) 7.2 (1989): 158-180.

Zezula, Pavel, Fausto Rabitti, and Paolo Tiberio. Dynamic partitioning of signature files. ACM
Transactions on Information Systems (TOIS) 9.4 (1991): 336-367.

Yan, Tak W., and Hctor Garca-Molina. Index structures for selective dissemination of information
under the boolean model. ACM Transactions on Database Systems (TODS) 19.2 (1994): 332-364.

