
1/6

CS 533 Information Retrieval Systems
Spring 2014 Class Notes of March 17th - 19th

Prepared by Devrim Şahin

Cluster Validation
Assume that we have an IR test collection, consisting of:

- A set of documents,
- A set of queries,
- Relevant documents for each query.

Remember cluster hypothesis: “Documents similar to each other will be relevant to the same
query”

Target cluster: A cluster that contains at least one relevant document for the query

nt: Average number of target clusters for the query (this should be a small number)

But how do we define small?

Observe that, for a query with 10 relevant documents, minimum number of target clusters is 1; and
maximum number of target clusters is 10.

ntr: Average number of clusters for a random clustering structure

Keep the clustering structure the same, and distribute documents randomly into these clusters.

One random is not enough. Do the same thing again, keep the structure (# of docs in each cluster)
the same, assign documents randomly.

Do this, say, 100 times, and take the average number of target clusters in the random case (ntr).
(This approach is named the Monte Carlo experiment.)

For a valid clustering structure, we need to have nt < ntr.
If nt < ntr, then possibly we have a valid clustering structure. However, it is not enough. nt must be
significantly smaller than ntr (nt << ntr).

Obtain the distribution of random observations and show them in a histogram:

2/6

(The right-hand side plot is taken from “Concepts and the effectiveness of the cover coefficient-
based clustering methodology” by F. Can and E. A. Ozkarahan)

How can we obtain the number of clusters for the random case?

Yao's formula

(see: Yao, S. B., “Approximating block accesses in database organizations.” Communications of the
ACM, Vol. 20, No. 4, 1977, pp. 260-261)

- Each block contains the same number of records (fixed record size)
. . .

 Blocks
Records

- How many blocks to access?

- How should we distribute the records, so that numbers to be accessed is minimized?

- Yao suggests a formula for the solution

- We can modify the formula to fit our needs
(see: Edward Omiecinski, Peter Scheuermann: A Parallel Algorithm for Record Clustering. ACM
Trans. Database Syst. 15(4): 599-624 (1990))

n: Number of records

m: Number of blocks (nc)

k: Number of records to be accessed (number of relevant documents)

Block size: n/m (no. of records per block)

How many blocks to be accessed: k ≤ n - n/m

(see: Cardenas paper)

Number of records in the jth block: p = Block size = n/m

Number of records in other blocks: n - p

Number of combinations that we can have if we try to select k documents out of n documents: Cn
k

Cn
k = n! / (k! (n-k)!)

Cn-p
k: different ways of selecting k documents from n-p documents

The probability that no records are selected from the jth block: Cn-p
k / Cn

k

3/6

To simplify the notation, let d = 1- 1/m

Then n-p = n-n/m = n(1-1/m) = nd

Probability of selecting at least a record from the jth block: E (Ij) = 1 - (Cn-p
k / Cn

k) = 1 - (Cnd
k / Cn

k)

Expected number of blocks to be accessed: ∑
j=1

m

E (I j)=m×(1−
C k

nd

Ck
n)

m×(1−
C k

nd

C k
n)=m×(1−

nd !
k !(nd−k) !

n !
k !(n−k)!

)=m×(1−∏
i=1

k
nd−i+1
n−i+1

)

In an IR environment, the probability of accessing a cluster (probability of accessing a cluster as a
target cluster):

p j=1−∏
i=1

k m j−i+1
n−i+1

mj: Number of documents in clusters other than the cluster Cj

Recall that:

ntr: Average number of target clusters when documents are randomly distributed for a set of queries

nt: The same average obtained by the clusters generated

We may tweak the formula to use it in declustering applications.

Job distribution

e.g.: Signature files

EXAMPLE:

k = 3
m = 100 (no. of records)
Cluster C1, |C1| = 5 (no. of records in C1)
Then mj = 100 - 5 = 95
p1 = 1 – [(95 – 1 + 1)/(100-1+1)] * [(95 – 2 + 1)/(100-2+1)] * [(95 – 3 + 1)/(100-3+1)] = 1-0.86
p1 = 0.14

Do this for every cluster, and sum these values up to obtain ntr.

4/6

Stemming
We use stemming with the hope of increasing recall and precision (effectiveness in general).

computer computability compute computation ==> comput <- stem

The version with stemming improves effectiveness by combining terms, thus detecting more
documents with the same term.

Stemming vs. lemmatizing:

better -> [lemmatizer] -> good

better -> [Porter's stemming algorithm] -> bett

Stemming also helps word conflation (making words smaller).

Types of stemming:

1. Manual

2. Automatic

2.a. Affix Removal

2.a.x. Longest Match

2.a.x. Simple Removal

2.b. Successor Variety*

2.b. Table Lookup

2.b. N-gram*

(* We will discuss these)

Affix Removal: Both prefix & suffix

(see: Porter's Algorithm)

How to evaluate stemmers?

- Correctness: words coming from the same root

- Impact on retrieval effectiveness

- Impact on index size (compression)

5/6

Problems for stemming:

Overstemming, understemming

(see: W. B. Frates and R. Baeza-Yates, “Information Retrieval Data Structures and Algorithms”,
Chapter 8)

Word truncation: First n characters

e.g.: First-5 (F5) works well for Turkish

bir -> [f5] -> bir

hatırlamak -> [f5] -> hatır

n-gram based stemming: Obtain n-letter subchains

2-gram is also named 'bi-gram'

e.g.: bi-grams for 'statistics' = {'st','ta','at','ti','is','st','ti','ic','cs'}

bi-grams for 'statistical' = {'st','ta','at','ti','is','st','ti','ic','ca','al'}

Use Dice measure to determine similarity:

- 8 common bi-grams

- dice ('statistics', 'statistical') = 2x8 / (9+10) = 16/19

Construct clusters using this similarity measure between terms

Successor variety (SV):

SV is due to Hafer & Weiss. It tries to determine stems using a collection of words (corpus).

An example:

- Corpus:

ABLE, APE, BEATABLE, FIXABLE, READ, READABLE, READING,

READS, RED, ROPE, RIPE

- Test word:

READABLE

6/6

Prefix Successor Variety Letters
R 3 E, O, I
RE 2 A, D
REA 1 D
READ 3 A, I, S
READA 1 B
READAB 1 L
READABL 1 E
READABLE 0

R RE REA READ READA READAB READABL READABLE

0

1

2

3

4

We can cut from READ.

PAT trees ('Patricia tree'):

n sistring (semi-infinite string)

For a PAT tree of n sistrings, there are n external nodes (leaves) and (n-1) internal nodes

text -> binary

Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

String: 0 1 1 0 0 1 0 0 0 1 0 1

Sistring1: 0 1 1 0 0 1 0 0 0 1 0 1

Sistring2: 1 1 0 0 1 0 0 0 1 0 1

Sistring3: 1 0 0 1 0 0 0 1 0 1

(...)

In fact we do not need to keep the tree structure; we can use the PAT array for tree search.

(Questions are to be added)

	Cluster Validation
	Yao's formula

	Stemming

