
Computer Engineering Department 
Bilkent University  
CS533: Information Retrieval Systems HW # 1 
Hidayet AKSU 
20007350 
 
1. a.  
  D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Relevant Y N Y N Y N N N N N 
Precision 1.00 0.50 0.67 0.50 0.60 0.50 0.43 0.38 0.33 0.30 

Q1 Recall 0.33 0.33 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 
            
 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

R-Q1 1.00 1.00 1.00 0.75 0.75 0.75 0.58 0.58 0.58 0.58 0.42 
            

            
  D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Relevant Y N Y N Y N N N N N 
Precision 1.00 0.50 0.67 0.50 0.60 0.50 0.43 0.38 0.33 0.30 

Q2 Recall 0.25 0.25 0.50 0.50 0.75 0.75 0.75 0.75 0.75 0.75 
            

 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
R-Q2 1.00 1.00 1.00 0.75 0.75 0.58 0.58 0.58 0.42 0.42 0.42 

            
            

 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
R-

AVERAGE 1.00 1.00 1.00 0.75 0.75 0.67 0.58 0.58 0.50 0.50 0.42 
            

 



Q1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Recall

P
re

ci
si

o
n

 

Q2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

P
re

ci
si

o
n

 

AVERAGE

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Recall

P
re

ci
si

o
n

 
 



1-b 
#relevant document for   Q1 is 3 and for Q2 is 4 so, 
 
 Q1 Q2 
R-Precision 2/3 2/4 
 
1-c 
Q1- Average Precision = (1.00 + 0.67 + 0.60)/3= 0.76 
Q2- Average Precision = (1.00 + 0.67 + 0.60 + 0)/4= 0.57 
Average of these values is the MAP, which is (0.76 + 0.57)/2= 0.66 
 
1-d 
 
Binary preference (bpref) 
 

∑ 









−=

r NR

her than rranked hign 

R
bpref

),min(
1

1
 

 
R: # of judged relevant documents 
N: # of judged irrelevant documents 
r:   relevant retrieved document 
n: one of the first R irrelevant retrieved documents 
 
 
For Query 1: 
 
R = 3, N = 7, 
 
Bpref =  

3

2

3
1

3

1 =








−∑

r

her than rranked hign 
 

 
For Query 2: 
 
R = 3, N = 7, 
 
Bpref =  

3

2

3
1

3

1 =








−∑

r

her than rranked hign 
 

 
 
 
Geometric mean (gm_ap) 
 

n

n

i
iagm ∏

=

=
1

  Where, a is average precision. 

 



 
 
2-a 
 
a.  Straightforward approach (using document vectors)  
 
To calculate the similarity, we can use the follow algorithm: 
for i=1 to m-1 

for j=i+1 to m 
calculate sij; 

end for 
end for 
 
here we have m=7. 
the total number of similarity values to be calculated is: 
sum = m(m 1)/2 = 7(7-1)/2 = 7*6/2=21 
 
 
b.  Term inverted indexes: 
 
t(1) -> {<1,1>, <2,1>, <3,1>, <5,1>} 
t(2) -> {<2,1>, <4,1>, <6,1>} 
t(3) -> {<7,1>} 
t(4) -> {<4,1>} 
t(5) -> {<1,1>, <3,1>, <4,1>, <5,1>} 
t(6) -> {<7,1>} 
t(7) -> {<6,1>,<7,1>} 
 
 
 
d1 -> {<1,1>, <5,1>} 
d2 -> {<1,1>, <2,1>} 
d3 -> {<1,1>, <5,1>} 
d4 -> {<2,1>, <4,1>, <5,1>} 
d5 -> {<1,1>, <5,1>}  
d6 -> {<2,1>, <7,1>} 
d7 -> {<1,1>, <6,1>, <7,1>} 
 
Consider d1: 
d1 contains t1 & t5.  

 

t1 t5 

d1, d2  
d3, d5 

d1, d3 

d4, d5 
U  

For d1, 
Calculate s12, s13, s14 
and s15 



Consider d2: 
It contains t1 and t2.  
 

 
 
Consider d3: 
It contains t1 and t5.  

 
Consider d4: 
It contains t2, t4 and t5.  

 
 
Consider d5: 
It contains t1 and t5.  

 

t1 t5 

d1, d2,  
d3, d5 

d1, d3, 
d4, d5 U  

U  

t4
2 

t5 

 d2,  d4, 
d6 

d1, d3, 
d4, d5 

d4 

t2 

U  

t1 t5 

d1, d2,  
d3, d5 

d1, d3, 
d4, d5 U  

t1 t2 

d1, d2,  
d3, d5 

d2, d4, 

 d6 
U  

For d2, 
Calculate s21, s23, s24, 
s25 and s26. But since s21 
= s12, no need for 
recalculation 

For d3, 
Calculate s31, s32, s34, 
and s35. But since s31 = 
s13, and s32=s23 no need 
for recalculation 

For d4, 
Calculate s42, s43, s45, 
and s46. But since s42 = 
s24, and s43=s34 no 
need for recalculation 

For d5, 
Calculate s51, s52, s53,  
and s54. But since s51 = 
s15, s52 = s25, s53 = s35, 
and s54=s45 no need for 
recalculation 



 
Consider d6: 
It contains t2 and t7.  
 

 
 
 
Consider d7: 
It contains t1, t6 and t7.  
 

 
 
Then, we need to compute 
Size of { s12, s13, s14, s15, s23, s24, s25, s26, s34, s35, s45, s46, s67 } = 13 
 
c. First , we need the inverted index for the terms, which are: 
 
t(1) -> {<1,1>, <2,1>, <3,1>, <5,1>} 
t(2) -> {<2,1>, <4,1>, <6,1>} 
t(3) -> {<7,1>} 
t(4) -> {<4,1>} 
t(5) -> {<1,1>, <3,1>, <4,1>, <5,1>} 
t(6) -> {<7,1>} 
t(7) -> {<6,1>,<7,1>} 
 
Jaccard Similarity Coefficient: |x ∩ y| / ( |x| + |y| - | x ∩ y| )  
 
Analyze the similarity arrays one document at a time: 
 
Consider d1: 
X 0 0 0 0 0 0 

 
d1 contains t1 and t5. 

U  

t1
2 

t7 

 d2,  d7 d1, d6, 
d7 

d1, 
d2,  
d3, d5 

t6 

U  

t2 t7 

d2,  d4, 
d6 

d1, d6, d7 
U  

For d6, 
Calculate s61, s62, s64,  
and s67. But since s61 = 
s16, s62 = s26, s64 = s46 
no need for recalculation 

For d7, 
no new s value, so, no 
need for recalculation 



 
After process t1 and t5, use Jaccard Similarity Coefficient to calculate similarity values:  
 
X 1/3 1 1/4 1 0 0 

 
s12=1/(2+2-1) s13=2/(2+2-2) s14=1/(2+3-1) s15=2/(2+2-2) 
    =1/3               =1                 =1/4               =1       
  
 
 Consider d2: 
X X 0 0 0 0 0 

 
d2 contains t1 and t2. 
 
After process t1 and t2, use Jaccard Similarity Coefficient to calculate similarity values:  
 
X X 1/3 1/4 1/3 1/3 0 

 
 
s23=1/(2+2-1) s24=1/(2+3-1) s25=1/(2+2-1) s26=1/(2+2-1) 
    =1/3               =1/4               =1/3               =1/3       

 
Consider d3: 
X X X 0 0 0 0 

 
d3 contains t1 and t5. 
 
After process t1 and t5, use Jaccard Similarity Coefficient to calculate similarity values:  
 
X X X 1/4 1 0 0 

 
 
               s34=1/(2+3-1)   s35=2/(2+2-2)  
                   =1/4                 =1                      

 
 
 
Consider d4: 
X X X X 0 0 0 

 
d4 contains t2, t4 and t5. 
 
After process t2, t4 and t5, use Jaccard Similarity Coefficient to calculate similarity values:  
 
X X X X 1/4 1/4 0 

 
 
                              s45=1/(2+3-1)   s46=1/(2+3-1)  
                                  =1/4                 =1/4                      

 



 
 
Consider d5: 
X X X X X 0 0 

 
d4 contains t1 and t5. 
 
After process t1 and t5, use Jaccard Similarity Coefficient to calculate similarity values:  
 
X X X X X 0 0 

 
 

 
Consider d6: 
X X X X X X 0 

 
D6 contains t2 and t7. 
 
After process t2 and t7, use Jaccard Similarity Coefficient to calculate similarity values:  
 
X X X X X X 1/4 

 
                                               s67=1/(2+3-1)  
                                                   =1/4                      

 
No need to compute similarity coef. For d7. 
 



3.  
Using computed similarity coefficient from 2-c, we get the S matrix is as follows: 
 





























=

125.000000

25.01025.0033.00

00125.0133.01

025.025.0125.025.025.0

00125.0133.01

033.033.025.033.0133.0

00125.0133.01

S  

   
single link: 
 
Step Pair Similarit

y 
1 d1d3 1 
2 d1d5 1 
3 d3d5 1 
4 d1d2 0,33 
5 d2d3 0,33 
6 d2d5 0,33 
7 d2d6 0,33 
8 d1d4 0,25 
9 d2d4 0,25 

10 d3d4 0,25 
11 d4d5 0,25 
12 d4d6 0,25 
13 d6d7 0,25 

 
dendrogram structure corresponding to the single-link 
 

 
 

0,33 

1 

d1 d3 d5 d6 d2 

0,25 

1,0 

0,0 

d7 d4 



complete link: 
 
Step Pair Similarit

y 
 

1 d1d3 1 Connect d1d3 at 1 
2 d1d5 1 cannot connect yet, we do not 

know similarity between d3 
and d5 

3 d3d5 1 Connect d3d5 at 1 
4 d1d2 0,33 cannot connect yet, we do not 

know s23 and s25 
5 d2d3 0,33 cannot connect yet, we do not 

know s25 
6 d2d5 0,33 Connect d2d5 at 0,33 
7 d2d6 0,33 cannot connect yet, we do not 

know s61,s63,s65 
8 d1d4 0,25 cannot connect yet, we do not 

know s42,s43,s45 
9 d2d4 0,25 cannot connect yet, we do not 

know s43,s45 
10 d3d4 0,25 cannot connect yet, we do not 

know s45 
11 d4d5 0,25 Connect d4d5 at 0,25 
12 d4d6 0,25 cannot connect yet, we do not 

know s61,s63,s65 
13 d6d7 0,25 Connect d6d7 at 0,25 

 

 
 

0,33 

1 

d1 d3 d5 d4 d2 

0,25 

1,0 

0,0 

d7 

0,25 

d6 

0,0 



4) 
wij = tfij × idfi 
 
individual components: 

tfij  is the  term frequency of occurrence inside that document 
 
idfi  is inverse function of the number of documents in the collection to which it is 

assigned. The idf factor can be computed as 1 divided by the document frequency 
wij  is the specificity of a given term as applied to a given document 

  
   
 
The inverse document frequency of a term can be obtained in advance from a collection 
analysis. by use of posting list of the index, the document frequencies, and its inverse, can be 
computed. So,  we can  incorporate the idf component to indexing on the fly. 
 
 
5 -a) 
term a: <1, 2> <3, 1> <8, 3> <10, 2> <12, 3> <17, 4> <18, 3>, <22, 2> <24, 2> <33, 4> <38, 
5> <43, 5> <55, 3>. 
 
term-b: <25, 2> <57, 1>. 
 
if no skip used: term-a and term-b  = p.list (a) <intersect> p.list(b) 
= {<1, 2> <3, 1> <8, 3> <10, 2> <12, 3> <17, 4> <18, 3>, <22, 2> <24, 2> <33, 4> <38, 5> 
<43, 5> <55, 3>} <intersect> {<25, 2> <57, 1>}  
Then for each post in each list, we neeed to search other list, then 2x13=26 comparisons  we 
have to do to find the intersection of these two lists. 
 
 
 
Introduce a skip structure, draw the corresponding figure then give the number of 
comparisons 
involved to process the same query. 
 
I introduce a skip structure such that I divide the positing list into chunks. Each chunk 
contains at most five posts. Chunks are ordered by its first posts document id in ascending 
order while Posts are ordered by documnt id in ascending order.  
 
Then the search is given by: 
 Search post-x in posting-list(Y) 
  For each chunk y of Y 
  if x. document _id > y.fist_element. document_id  then  
        skip chunk y 
  else 
                                  search only chunk y and then return 
 
 
Then the term-a:   
Chunk 1 <12, 3> <10, 2> <8, 3> <3, 1> <1, 2> 



 
Chunk 2 
 
Chunk 3 
 
 
 
 Then the term-b:   
Chunk 1 
 
 
 
 
Then let process the same query: 
Query is term-a and term-b  = p.list (a) <intersect> p.list(b) 
 
Since p.list(b) contains less elements, we start with it. 
 
For <57,1>:  
 1) compare with post in Chunk 1,  57 > 12, skip Chunk 1  
 2) compare with post in Chunk 2,  57 > 33, skip Chunk 2  
 3) compare with post in Chunk 3,  57 > 55, skip Chunk 3  
 
For <25,2>:  
 1) compare with post in Chunk 1,  25 > 12, skip Chunk 1  
 2) compare with post in Chunk 2,  25 < 33 
   3) compare with next post in Chunk 2,  25 > 24, return not found.  
 
 
Then 3+3=6 comparisons are performed in my skip structure while 26 comparisond are 
performed when no skip used.  
 
 
if we use large skips then we will have less chunks. However, this time each chunk size will 
be longer, so searchs in chunks will cost more. Similarly, if we use small skips then we will 
have more chunks which are longer.  
   Searchs are done in two parts,    
 First-Find chunk: for this   in worst case p.list size / chunk size comparisons are 
processsed. 
 Second-search chunk: for this   in worst case chunk size comparisons are processsed. 
Then totally [N = (p.list size / chunk size) + chunk size] comparisons are performed. 
Đn order to minimize comparisons, we can choose chunk size = sqrt(p.list size), then in worst 
case N = 2* sqrt(p.list size) comparisons are performed. 
 
5 -b) 

i) ordered by fd,t, 
term a: <38, 5> <43, 5> <17, 4> <33, 4> <8, 3> <12, 3> <18, 3> <55, 3> <1, 
2> <10, 2> <22, 2> <24, 2> <3, 1>. 

 
i) ordered by frequency information in prefix form, 

<33, 4> <24, 2> <22, 2> <18, 3> <17, 4> 

<55, 3> <43, 5> <38, 5>   

<57, 1> <25, 2>    



term a: <5:2: 38, 43> <4:2: 17, 33> <3:4: 8, 12, 18, 55> <2:4:1, 10, 22, 24> 
<1:1: 3>. 

 
Repeated frequencies fd,t are not stored, giving a considerable saving. But within each equal-
frequency segment of the list, the d-gaps are now on average larger when the document 
identifiers are sorted, and so the document number part of each pointer increases in cost. In 
combination, these two effects typically result in frequency-sorted indexes that are slightly 
smaller than document-sorted indexes. 
Using a frequency-sorted index, a simple query evaluation algorithm is to fetch each list in 
turn, processing <d, fd,t > values only while wq,t × wd,t ≥ S, where S is the threshold. If disk 
reads are performed one disk block at a time rather than on a wholeof-inverted-list basis, this 
strategy significantly reduces the volume of index data to be fetched without degrading 
effectiveness. 
A practical alternative is for the first disk block of each list to be used to hold the <d,fd,t > 
values with high fd,t. These important blocks could then all be processed before the remainder 
of any lists, ensuring that all terms are given the opportunity to create accumulators. The 
remainder of the list is then stored in document order. 



6 
a. In supervised classification, we are provided with a collection of labeled (preclassified) 
patterns; the problem is to label a newly encountered, yet unlabeled, pattern. Typically, the 
given labeled (training) patterns are used to learn the descriptions of classes which in turn are 
used to label a new pattern. In the case of clustering, the problem is to group a given 
collection of unlabeled patterns into meaningful clusters. In a sense, labels are associated with 
clusters also, but these category labels are data driven; that is, they are obtained solely from 
the data. 
 
 
 I would you have The convergent k-means algorithm and its ANN equivalent  in Information 
Filtering.  
The reasons behind this choose are: 

(1) Its time complexity is O(nkl), where n is the number of patterns, k is the number of 
clusters, and l is the number of iterations taken by the algorithm to converge. 
Typically, k and l are fixed in advance and so the algorithm has linear time complexity 
in the size of the data set . 
(2) Its space complexity is O(k+n). It requires additional space to store the data matrix. 
It is possible to store the data matrix in a secondary memory and access each pattern 
based on need. However, this scheme requires a huge access time because of the 
iterative nature of the algorithm, and as a consequence processing time increases 
enormously. 
 (3) It is order-independent; for a given initial seed set of cluster centers, it generates 
the same partition of the data irrespective of the order in which the patterns are 
presented to the algorithm. 

 
  
b.  
 
Typical pattern clustering activity involves the following steps [Jain and Dubes 1988]: 
(1) pattern representation (optionally including feature extraction and/or selection), 
(2) definition of a pattern proximity measure appropriate to the data domain,  
(3) clustering or grouping, 
(4) data abstraction (if needed), and 
(5) assessment of output (if needed). 
 
Pattern representation refers to the number of classes, the number of available patterns, and 
the number, type, and scale of the features available to the clustering algorithm. Some of this 
information may not be controllable by the practitioner. Feature selection is the process of 
identifying the most effective subset of the original features to use in clustering. Feature 
extraction is the use of one or more transformations of the input features to produce new 
salient features. Either or both of these techniques can be used to obtain an appropriate set of 
features to use in clustering.  
Pattern proximity is usually measured by a distance function defined on pairs of patterns. A 
variety of distance measures are in use in the various communities. A simple distance measure 
like Euclidean distance can often be used to reflect dissimilarity between two patterns, 
whereas other similarity measures can be used to characterize the conceptual similarity 
between patterns.  
The grouping step can be performed in a number of ways. The output clustering (or 
clusterings) can be hard (a partition of the data into groups) or fuzzy (where each pattern has a 



v ariabledegree of membership in each of the output clusters). Hierarchical clustering 
algorithms produce a nested series of partitions based on a criterion for merging or splitting 
clusters based on similarity. Partitional clustering algorithms identify the partition that 
optimizes (usually locally) a clustering c riterion.Additional techniques for the grouping 
operation include probabilistic and graph-theoretic clustering methods. 
 Data abstraction is the process of extracting a simple and compact representation of a data 
set. Here, simplicity is either from the perspective of automatic analysis (so that a machine 
can perform further processing efficiently) or it is human-oriented (so that the representation 
obtained is easy to comprehend and intuitively appealing). In the clustering context, a typical 
data abstraction is a compact description of each cluster, usually in terms of cluster prototypes 
or representative patterns such as the centroid.  
Assessment of output: How is the output of a clustering algorithm evaluated? What 
characterizes a ‘good’ clustering result and a ‘poor’ one? All clustering algorithms will, when 
presented with data, produce clusters regardless of whether the data contain clusters or not. 
 
c.   
the purpose of “cluster tendency” analysis is to exemine the input data to see if there is any 
merit 
to a cluster analysis prior to one being performed 
  
d.  
The k-means is the simplest and most commonly used algorithm employing a squared error 
criterion. It starts with a random initial partition and keeps reassigning the patterns to clusters 
based on the similarity between the pattern and the cluster centers until a convergence 
criterion is met (e.g., there is no reassignment of any pattern from one cluster to another, or 
the squared error ceases to decrease significantly after some number of iterations). 
 
k-Means Clustering Algorithm: 
(1) Choose k cluster centers to coincide with k randomly-chosen patterns or k randomly 
defined points inside the hypervolume containing the pattern set. 
(2) Assign each pattern to the closest cluster center. 
(3) Recompute the cluster centers using the current cluster memberships. 
(4) If a convergence criterion is not met, go to step 2. Typical convergence criteria are: no (or 
minimal) reassignment of patterns to new cluster centers, or minimal decrease in squared 
error. 
 
e.  
 
An agglomerative approach begins with each pattern in a distinct (singleton) cluster, and 
successively merges clusters together until a stopping criterion is satisfied. A divisive method 
begins with all patterns in a single cluster and performs splitting until a stopping criterion is 
met. 
 
What we do in the single-link and complete-link clustering methods we studied in class is to 
begins with each pattern in a distinct cluster, and successively merges clusters together until a 
stopping criterion is satisfied. So,  the single-link and complete-link clustering methods we 
studied in class are agglomerative. 
 
f.  



What are the applications areas of clustering? List all of them. Explain two areas other than IR 
with 
one or two paragraphs. (That is explain how clustering is being used in these areas.) 
 
applications areas of clustering are:  
(1) image segmentation 

The segmentation of the image(s) 
presented to an image analysis system 
is critically dependent on the scene to 
be sensed, the imaging geometry, configuration, 
and sensor used to transduce 
the scene into a digital image, and ultimately 
the desired output (goal) of the 
system. 

(2) object and character recognition, 
The use of clustering to group views of 3D objects 
for the purposes of object recognition in 
range data was described in Dorai and 
Jain [1995]. The term view refers to a 
range image of an unoccluded object 
obtained from any arbitrary viewpoint. 
The system under consideration employed 
a viewpoint dependent (or viewcentered) 
approach to the object recognition 
problem; each object to be 
recognized was represented in terms of 
a library of range images of that object. 

(3) document retrieval, and  
(4) data mining. 
 
 
7) 
a) Cranfield methodology provides the researchers a laboratory enviroment for test of 
information retrival systems. It abstract the details and let to directly face with benchmark 
task called “test collection.” 
 
b) The Text REtrieval Conference (TREC), co-sponsored by the National Institute of 
Standards and Technology (NIST) and U.S. Department of Defense. Its purpose was to 
support research within the information retrieval community by providing the infrastructure 
necessary for large-scale evaluation of text retrieval methodologies. In particular, the TREC 
workshop series has the following goals:  

• to encourage research in information retrieval based on large test collections;  
• to increase communication among industry, academia, and government by creating an 

open forum for the exchange of research ideas;  
• to speed the transfer of technology from research labs into commercial products by 

demonstrating substantial improvements in retrieval methodologies on real-world 
problems; and  



• to increase the availability of appropriate evaluation techniques for use by industry 
and academia, including development of new evaluation techniques more applicable to 
current systems.  

c) 
An experiment conducted by the SMART retrieval group in TREC 1–8 demonstrated that 
retrieval effectiveness did indeed improve over that time. Developers of the SMART retrieval 
system kept a frozen copy of the system they used to participate in each of the eight TREC ad 
hoc tasks. They ran each system on each test collection. For each collection, the later versions 
of the SMART system were much more effective than the earlier versions, with the later 
scores approximately twice those of the earliest scores. While this experiment involved only 
the SMART system, SMART results consistently tracked with the other systems’ results 
in each TREC. SMART results can therefore be considered representative of the field as a 
whole. 
 
She mentions that “SMART results consistently tracked with the other systems’ results in 
each TREC”, if it is sure that “SMART results consistently tracked with all other systems’ 
results in each TREC”, than I may consider SMART results as representative of the IR filed. 
 
 


