
Related Article Suggestion 
with Diversity and 

Relevance Feedback on 
Turkish Wikipedia Corpus

Devrim ahinŞ



2/28

Motivation and Description

Wikipedia is a good resource

Very useful if you know what you seek

But, difficult to explore

Well-structured pages have an 'also see' section, the 
rest of the articles lack such connections



3/28

Motivation and Description

Aim: To provide an automated list of relevant 
articles for a given Wikipedia article in Turkish 
Wikipedia

Why: Because 'Vikipedi' is not very well-organised

Most of the articles lack a 'related pages' section



4/28

Motivation and Description

We want these results to be diverse

We want to explore as many aspects as possible

Through MMR

We want the user to be able to refine the results

Relevance feedback

Through 'query expansion'



5/28

Methodology

User requests related articles for a query

Queries are also articles

10 diverse results are retrieved

Diversity through MMR



6/28

Methodology

User then chooses which of the results are relevant 
and which are irrelevant

Using the relevance feedback, results are refined

This step can be repeated many times by the user

Method: Query expansion



7/28

Methodology

Relevance feedback through query expansion



8/28

Methodology

Relevance feedback through query expansion



9/28

Methodology

Relevance feedback through query expansion



10/28

Methodology

Relevance feedback through query expansion



11/28

Methodology

Relevance feedback through query expansion



12/28

Work Done

XML dump of the Turkish Wikipedia was 
downloaded (289 MB)

Plain text extraction: WP2TXT by Yoichiro Hasebe

Seven huge .txt files generated (313MB in total)

Python script to save to separate files, enumerated 
from 1 to 209681. Also, titles are saved separately.



13/28

Work Done

Obtain word stems, find a unique list of terms, 
extract 100 stop words

Stemming method: First-5, no numerals, Turkish 
characters are converted to their ASCII counterparts.

Terms shorter than 3 characters are also discarded

248186 terms in the end



14/28

Work Done

Stop words:

bir, ile, olara, olan, icin, bulun, yilin, taraf, sonra, yapil, ilk, vardi, basla, 
daha, arasi, bagli, tarih, birli, kulla, cok, buyuk, ise, sagla, yilla, oldug, 
gelen, ancak, gibi, gore, yer, kadar, iceri, zaman, calis, olup, yerle, 
uzeri, iki, alani, ilces, karsi, kurul, kendi, dunya, uzakl, ekono, okulu, 
koyun, yerin, hayva, yoktu, yol, ayni, bolge, ayric, genel, tarim, goste, 
merke, donem, ilini, kanal, koydu, sagli, iklim, elekt, yukse, yapti, 
ulasi, diger, bilgi, veril, olmus, koyde, baska, oldu, her, adi, sahip, 
suyu, ilkog, icind, etki, eski, yonet, kazan, hakki, dayal, sebek, egiti, 
son, telef, subes, sabit, icme, degis, ocagi, bilin, oneml, turk



15/28

Work Done

Using the term list, index (191 MB) and inverted 
index (204 MB) are constructed

Finally, the diverse and non-diverse 10-nearest 
neighbor sets for all documents are calculated and 
stored in two different .npz files*

(*) psst, there is a problem here



16/28

Work Done

Why store the diverse and non-diverse NN-sets?

1st iteration: “Provide 10 diverse results for q”

Simple lookup from the diverse NN dataset

Following iterations: Expand the result set using NN 
sets of each of the elements in the result set

Again, retrieve from the predefined non-diverse NN 
dataset



17/28

Work Done

Finally, a Python-based web server is implemented 
using the Flask library

Uses the final k-NN lists only

Diverse lists for initial results, non-diverse lists for 
the expansions in the later iterations

No need for on-the-run distance calculations



18/28

(*): Problem

The code is excruciatingly slow

Constructing the index and the inverted index takes 
up to a couple hours

Finding the neighors would take days

Parallelism and multithreading did not help



19/28

Evaluations

For testing purposes, we worked on a subset of 
Wikipedia

Each 100th article was taken

Results are worse than expected:

Most of the relevant documents are not included



20/28

Evaluations

Example: Similarity to the query on 3 iterations

(Greater value = Better accuracy) lambda = 0.25



21/28

Evaluations

Example: Diversity within result set on 3 iterations

(Greater value = Better diversity) lambda = 0.25



22/28

Evaluations

Clearly, accuracy is not acceptable

This is due to how we sampled the data

Most of the relevant documents are lost

Another way of sampling:

Pick 20 seeds with highest coupling factors

For each, include a 100-nearest neighbor set

2020 samples in total



23/28

Evaluations

+10 hrs of preprocessing

Both accuracy and diversity increased significantly

For example, articles from “Klasik Türk müziği 
makamları” category are all included, and retrieved 
as similar articles

(with similarity: 0.75, diversity: 1.4)



24/28

Evaluations

However, the similarity of these groups degrade 
sharply

First few groups: “Tarihler”, “Anlam ayrım sayfaları”, 
“Allah'ın sıfatları”, “Kategori sayfaları”

These have accuracy levels up to 1.0

After this, accuracy drops below 0.4



25/28

Conclusıons

First-5 stemming + Cosine similarity did not properly 
work on Wikipedia data because:

Articles which are phrased in a repetitive way were 
deemed very similar

For the rest of the articles, having the same words 
did not mean having the same context



26/28

Conclusıons

Future work:

The algorithm should be tested on various other 
datasets, for which we have a ground truth

For Wikipedia, we might change our approach from a 
term-based similarity to trying to discover link 
connections (e.g. Tracking user 'paths' might provide 
better information on how articles are connected)



27/28

Thank you for listening

Questions & Comments



28/28

References

● Jaime Carbonell and Jade Goldstein. “The use of MMR, diversity-based 
reranking for reordering documents and producing summaries.” 1998

● Michael E Houle et al. “Can shared-neighbor distances defeat the curse 
of dimensionality?” In: Scientific and Statistical Database Management. 
Springer. 2010, pp. 482–500.

● TSCorpus <http://www.tscorpus.com>
● Bahaeddin Eravci and Hakan Ferhatosmanoglu. “Diversity based 

Relevance Feedback for Time Series Search”. In: Proceedings of the 
VLDB Endowment 7.2 (2013).


	Slayt 1
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28

