Clustering and Creating Recommendations
with Scholarly Publication Data

Mustafa Can Cavdar & TolgaYilmaz




Problem Description

Scholarly websites provide list of papers
Google Scholar, CiteUlike, Citeseerx, dblp

Finding a particular paper is easy if it is known
what is exactly needed.

Related articles and related authors to a topic
cannot be found easily.



Motivation

While researching on the web, we want to find the
people who are the most related ones to the topic.

People want to see who produce articles from a
certain field and who have similar works.

It is not seen that people can see similar papers with
stating a certain paper.

It is a big amount of data to play with and it is a good
opportunity to create an open source
implementation.



Functionalities

Basic Search

Article search

Author search
Given an article, find similar articles.
Given a field, find related articles.
Given an author, find similar authors.



Methodology

Collect Data.
Search

Find similar entities
List of tools

oaiharvester, Lucene, MySQL, jQuery/javascript,
Java servlets, Tomcat, Bootstrap ui.



Collecting Data and parsing

CiteUlike gives a snapshot of daily article postings. Given an id
from this data, you need to crawl their website -> Banned.
Google Scholar does not provide the data but one crawl their
website -> Banned.

Dblp gives their entire dataset. But the set does not include
abstracts of articles. Not good for similarity calculations.
Citeseerx makes their data set through an OAl interface for
querying.

We collected the data set using an OAl harvester. The size is ~ 943MB
This file is a corrupted XML file which needs to be parsed. After
parsing this we have a file for each article. We have limited this
number to 250000 for performance issues. Total size here is ~201
MB (976 MB on disk).



Search

For this part, we built a basic search engine on
top of Lucene which is a Java based, open source
search engine library.
Indexing

is done using existing Lucene code.

The constructed index is around 67 MB.
Searching

is implemented on top of Lucene.
In order to retrieve the resulting documents of
the search process, we have also inserted them
into a MySQL database.



Search Flow




Given an article, find similar articles

The article is seen as a query. Finding similar
articles then is a simple search process.



Given an author, find similar

authors

The article is seen as a query. Finding similar articles then is
also a search process over the built index. (Note that this
index is a seperate one.)

Author 1 Author 1

> Indexing [[D

Index

Merge Y,
(=

Author N
Author N

10



Experimental Results

We have an efficient search mechanism.

Evaluation of effectiveness of results is
possible

Over a small set of queries, find P@210 and MAP
which are very high at first glance.

Other methods are not possible due to lacking
comparison source.

11



THANKYOU FOR LISTENING!

Any Questions?




