
Kaan Onarlıoğlu

March 17, 2009

1

CS 533: Information Retrieval Systems, Assignment #1

1. a. TREC Interpolation Rule: For each standart recall value ‘i’ from 0.0 to 1.0 with 0.1 increments,

take the maximum precision obtained at any actual recall value greater or equal to ‘i’.

For Q1:

Total no of relevant documents: 4

Actual Recall & Precision Table:

Rank 1 2 3 4 5 6 7 8 9 10

Relevant Yes No Yes No Yes Yes No No No No

Precision 1/1 1/2 2/3 2/4 3/5 4/6 4/7 4/8 4/9 4/10

Recall 0.25 0.25 0.50 0.50 0.75 1.00 1.00 1.00 1.00 1.00

Interpolated Recall & Precision Table:

Precision 1 1 1 2/3 2/3 2/3 4/6 = 2/3 4/6 4/6 4/6 4/6

Recall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 Recall Precision Graph:

0,00

0,20

0,40

0,60

0,80

1,00

0,0 0,2 0,4 0,6 0,8 1,0

P
re

ci
si

o
n

Recall

Recall - Precision Curve

Kaan Onarlıoğlu

March 17, 2009

2

For Q2:

Total no of relevant documents: 5

Actual Recall & Precision Table:

Rank 1 2 3 4 5 6 7 8 9 10

Relevant Yes No Yes No Yes No No No No No

Precision 1/1 1/2 2/3 2/4 3/5 3/6 3/7 3/8 3/9 3/10

Recall 0.2 0.2 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.6

Interpolated Recall & Precision Table:

Precision 1 1 1 2/3 2/3 3/5 3/5 0 0 0 0

Recall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall Precision Graph:

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

P
re

ci
si

o
n

Recall

Recall - Precision Curve

Kaan Onarlıoğlu

March 17, 2009

3

For Q1 + Q2:

Average Interpolated Recall & Precision Table:

Precision 1 1 1 2/3 2/3 19/30 19/30 1/3 1/3 1/3 1/3

Recall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall Precision Graph:

b.

Q1: Total of 4 relevant documents.

 2 relevant documents retrieved in the top 4 documents.

 → R-Precision = 2/4 = 1/2

Q2: Total of 5 relevant documents.

 3 relevant documents retrieved in the top 5 documents.

 → R-Precision = 3/5

Q1 + Q2: Mean of the R-Precisions for Q1 and Q2 = = = 0.55

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

P
re

ci
si

o
n

Recall

Recall - Precision Curve

Kaan Onarlıoğlu

March 17, 2009

4

c.

Average precision for Q1 = (1 + 2/3 + 3/5 + 4/6) / 4 = 0.73

Average precision for Q2 = (1 + 2/3 + 3/5 + 0 + 0) / 5 = 0.45

MAP = (0.73 + 0.45) / 2 = 0.59

2.

D =

a. The straightforward approach to construct the S matrix is to calculate the similarity between every

pair of documents. Since the S matrix is symmetric and a document ‘d’ is similar to itself, we only need

to calculate the following matrix elements:

 S =

s12, s13, s14, s15 count = 4

 s23, s24, s25 count = 3

 s34, s35 count = 2

 s45 count = 1 → Total = 10 similarity calculations

Kaan Onarlıoğlu

March 17, 2009

5

b. By using term inverted indexes to construct the S matrix, we aim to identify the documents that have

at least one common term, so that the similarity between those documents is non-zero.

Consider the D matrix given above.

The resulting postings lists are as follows:

t1 → d1, d5 t4 → d1, d3, d4 t7 → d1, d3, d4

t2 → d1, d3, d5 t5 → d2, d4

t3 → d2 t6 → d2, d5

We then need to calculate the following similarity coefficients:

 Consider d1:

 d1 contains terms t1, t2, t4, t7

 t1 → d1, d5 Calculate S15

 t2 → d1, d3, d5 Calculate S13

 t4 → d1, d3, d4 Calculate S14

 t7 → d1, d3, d4 Calculate -

 Consider d2:

 d2 contains terms t3, t5, t6

 t3 → d2 Calculate -

 t5 → d2, d4 Calculate S24

 t6 → d2, d5 Calculate S25

 Consider d3:

 d3 contains terms t2, t4, t7

 t2 → d1, d3, d5 Calculate S35

 t4 → d1, d3, d4 Calculate S34

 t7 → d1, d3, d4 Calculate –

Kaan Onarlıoğlu

March 17, 2009

6

Consider d4:

 d4 contains terms t4, t5, t7

 t4 → d1, d3, d4 Calculate -

 t5 → d2, d4 Calculate -

t7 → d1, d3, d4 Calculate -

No need to consider d5.

 Total similarity coefficient calculations: 3 + 2 + 2 + 0 = 7

c. We cannot further reduce the number of similarity calculations since we must always calculate the

similarity coefficients for documents that have non-zero similarity coefficients (of course, with the

assumption that we cannot omit the calculation of insignificant similarity values). We can, however,

improve the performance of the term inverted indexing method by organizing the posting lists in reverse

order. In the previous method, we only need to consider the documents which have IDs higher than the

currently processed document. Therefore, organizing the posting lists in reverse order eliminates

unnecessary accesses to the indexing structure and ID comparisons with the lower ID documents.

3.

S =

Figure 1 - Dendrogram for single-link approach Figure 2 – Dendrogram for complete-link approach

Kaan Onarlıoğlu

March 17, 2009

7

4. The given formula is a function that could be used for calculating the weights of indexing terms for an

automatic text-retrieval system:

wij = tfij * idfij

In this formula,

wij is the weight of term ‘i’ in document ‘j’, which assesses how much that term can distinguish a

document from the rest of the collection

tfij is the frequency of occurrence of term ‘i’ in document ‘j’, and

idfi is an inverse function of the number of documents in the entire collection to which term ‘i’ is

assigned.

Provided we use an inverted index, we can efficiently incorporate the idf component to indexing during

query processing. For each term in the query, we fetch the corresponding document list from the

inverted index and compute idf over the list of documents in <document id, term frequency> pairs. We

can also get the tf for each query term from these pairs, compute w, and retrieve the top ‘r’ documents

that are most similar to the query.

Otherwise, if we do not have an inverted index for the document collection, we need to perform an

exhaustive search of documents to compute idf; therefore it would be very inefficient to compute idf

during query processing. Preprocessing the collection to pre-compute idf values would be a much better

choice in this case.

5. a.

The posting lists are given as:

term-a: <1, 2> <3, 1> <9, 2> <10, 3> <12, 4> <17, 4> <18, 3>

<22, 2> <24, 2> <33, 4> <38, 5> <43, 5> <55, 3>

term-b: <28, 2> <56, 1>

Let’s divide the posting lists in chunks of at most four items and sort each chunk in reverse order
according to the document ID. The resulting chunks are:

term-a:

Chunk 1: <10, 3> <9, 2> <3, 1> <1, 2>
Chunk 2: <22, 2> <18, 3> <17, 4> <12, 4>
Chunk 3: <43, 5> <38, 5> <33, 4> <24, 2>
Chunk 4: <55, 3> <> <> <>

term-b:

Chunk 1: <56, 1> <28, 2> <> <>

Kaan Onarlıoğlu

March 17, 2009

8

Then our skipping scheme is as follows: Suppose we are searching for document D. We first compare D

with the first <document_ID, frequency> pair of the first chunk. If document_ID > D, we sequentially

search the current chunk; otherwise if document_ID < D, we skip the chunk and repeat the process with

the next chunk.

For the given Boolean query “term-a AND term-b”,

Without skipping: We need to compare each entry in the posting list of term-a with each entry in

 the posting list of term-b, so that we can compute the intersection.

Posting list of term-a has 13 entries.

Posting list of term-b has 2 entries.

 → We need 13 * 2 = 26 comparisons.

With skipping:

Retrieve first element of term-b list: <56, 1>

Process term-a list:

Start with Chunk 1: 56 > 10 (skip this chunk)

Process Chunk 2: 56 > 22 (skip this chunk)

Process Chunk 3: 56 > 43 (skip this chunk)

Process Chunk 4: 56 > 55 (skip this chunk)

 Retrieve next element of term-b list: <28, 2>

 Process term-a list:

Start with Chunk 1: 28 > 10 (skip this chunk)

Process Chunk 2: 28 > 22 (skip this chunk)

Process Chunk 3: 28 < 43 (OK)

 Search the rest of Chunk 3: 28 =? 38

28 =? 33

28 =? 24

 Total number of comparisons: 4 + 3 + 3 = 10

Clearly, skipping improves the performance.

Kaan Onarlıoğlu

March 17, 2009

9

If we use larger chunks, the number of chunks will be less and we will be able to eliminate more

unnecessary comparisons by skipping a chunk. However, when we need to search inside a chunk, we will

be doing many comparisons since there will be more elements in a chunk.

Conversely, if we use smaller chunks, we will end up with more number of chunks; which will result in

smaller skip distances and more comparisons with the chunk heads; but the number of entries in a

single chunk will be less and searching within a chunk will require less comparisons.

b.

Posting list of term-a ordered by fd,t:

term-a: <38, 5> < 43, 5> <12, 4> <17, 4> <33, 4> <10, 3> <18, 3>

<55, 3> <1, 2> <9, 2> <22, 2> <24, 2> <3, 1>

Posting list of term-a ordered by frequency information in prefix form:

 term-a: <5:2:38, 43> <4:3:12, 17, 33> <3:3:10, 18, 55> <2:4:1, 9, 22, 24> <1:1:3>

Storing the list in frequency-order improves the query processing since we can now process the

documents with higher term-frequency values, ie. those documents that are considered more relevant

to the search query, first. Then, when the frequency value drops below a threshold value, we may end

the processing of the list, thus eliminating unnecessary fetches. If the posting-list is not entirely fetched

but read block-by–block from the disk, the performance gain becomes more significant.

Storing the frequency-ordered list in prefix form makes it possible to eliminate repeating frequency

values in the list, at the cost of introducing an overhead to store multiple document IDs in a single

frequency entry. However, the combined result is a smaller size posting list than the previous document-

ordered list.

6. a. In supervised classification, we are provided with a pre-classified collection of patterns and the task

is to classify a newly encountered pattern according to previous knowledge based on our collection.

However, in unsupervised classification such a pre-classified collection is not available, and the task is to

group a set of unlabeled patterns into meaningful clusters.

Information filtering systems make use of supervised classification since they are usually trained with a

collection of pre-classified data that makes it possible for the system to recognize and filter out

undesired data based on filtering parameters.

b. The components of a clustering framework are:

 1. Pattern representation, including feature extraction/selection: In this step the range of

features available to the clustering algorithm to take into consideration are determined. Feature

Kaan Onarlıoğlu

March 17, 2009

10

selection is the process of choosing the most effective features among a set of features, and feature

extraction is the process of transforming one or more of the available features to create new features. In

the context of Information retrieval, documents are the patterns and they are represented by term

indexes.

 2. Definition of a pattern proximity measure: In this step, a function to measure the similarity,

or dissimilarity as appropriate, between a pair of patterns is determined. In Information Retrieval, this

step corresponds to choosing a term weighing function or a similarity measure such as the Cosine, Dice

or Jacob’s similarity coefficients.

 3. Clustering: This is the actual step in which patterns are clustered into groups based on their

similarities. The clustering process may have different results depending on the choices made in the

previous steps, and on the clustering method used, such as hierarchical, probabilistic, partitional

clustering. In Information Retrieval, this step corresponds to running a document clustering algorithm.

 4. Data abstraction: This step is used for extracting a simple and compact representation of the

formed clusters, so that further processing or understanding of the clustered data is simpler. In

Information Retrieval, this step corresponds to choosing cluster representatives/centroids.

5. Assessment of output: This is the process of evaluating the results of the clustering process to

decide whether the resulting clusters are meaningful and whether they conform to some pre-

determined criteria such as expected statistical outcomes. It may also include comparing the

effectiveness of the used clustering scheme with another scheme. In Information Retrieval, this is the

cluster validation step.

c. “Cluster tendency analysis” refers to the analysis of some input data to determine whether that data

domain is suitable for clustering, in other words whether clusters are present in that data set. It is

carried out before the clustering process to decide whether there is any benefit in performing a

clustering process on that data.

d. Data mining deals with the problem of extracting meaningful data from vast data stores; therefore

clustering this data into appropriate clusters is usually one of the first steps of data mining approaches.

One of the uses of clustering in data mining is “segmentation” of databases, which means dividing large

databases into homogenous groups. This is used for increasing the efficiency of processing data by

working on individual segments as opposed to the full database, compression of data and identifying

characteristics dominant in different segments.

Another use of clustering is “predictive modeling” for statistical analysis of data. Predictive modeling

uses clustering to group data items into clusters, to characterize those groups by inferring rules on them

and to suggest predictive models in order to aid a researcher in discovering potential hypotheses to test

the statistical analysis performed.

Kaan Onarlıoğlu

March 17, 2009

11

Finally, clustering could be used for “visualization of data”, by grouping data sets in large databases into

clusters and making it possible for researchers to identify sub-groups with similar or different

characteristics.

Some practical applications of clustering in data mining include mining very large unstructured

databases, such as World Wide Web, by clustering web documents, or clustering geological databases to

identify oil & gas reserves and drill areas.

7. a. The Cranfield methodology is a paradigm for evaluating and comparing information retrieval

technologies in a laboratory setting. Following the Cranfield methodology, different tasks and user

groups for an information retrieval system are left aside; instead, a “test collection”, which is composed

of a set of documents, a set of topics and a relevance judgment of documents to topics, is used for

experimenting with the information retrieval system, with the sole task of ranking the relevant

documents for a topic over the non-relevant ones.

b. TREC was originally established by NIST and DARPA to build a large test collection in order to evaluate

an information retrieval system developed by NIST. However, today its purpose is to encourage

information retrieval research by providing a forum for the researchers all around the world to

communicate and exchange ideas, to support evaluation and comparison of competing information

retrieval systems by building and providing large test collections and required evaluation tools, and to

promote the increase of retrieval effectiveness.

c. TDT has five major tasks. These are:

1. Story segmentation, involves segmenting a data source to topically coherent subsections

2. Topic tracking, involves tracking events of interest in future stories

3. Topic detection, involves detecting stories on the same topic and grouping them together

4. First story detection, involves detecting whether a story is the first one about a new topic

5. Link detection, involves detecting whether given two stories are topically linked

8.

a. I could not derive this proof on my own since it requires knowledge and experience of advanced

graph theory. Many sources refer to the book “Mathematical Taxonomy” by Nicholas Jardine and Robin

Sibson as the main work related to the formal foundations of single-link clustering, which also includes

the proof for order invariance of inputs to the single-link clustering algorithms; however, the book is not

available online, or at the METU and Bilkent University libraries.

The following proof presented proves the order independence of the single-link clustering algorithm

with the assumption that all the similarity pair values are sorted in descending order which is the

Kaan Onarlıoğlu

March 17, 2009

12

common form of application in popular implementations. For the complete proof not based on this

assumption, I will refer to the mentioned book when available.

This proof is based on the proof provided by Ramazan Yılmaz but it has been modified in part since I do

not completely agree on the original version of the proof, and it reflects my own interpretation of the

problem and its solution.

Proof:

Let ‘L’ be the list of ordered similarity pair values. We shall first prove that swapping two adjacent

similarity pair values in L does not affect the final dendrogram structure.

Let AB be the ith pair and let CD be the i+1th pair in L, where A, B, C and D are not necessarily distinct

documents, and AB & CD are two pairs with equal similarity values so that we can change the order of

processing them. We shall show that processing these two pairs in either order results in the same

dendrogram.

After processing the i-1th pair, one of the following cases must hold:

Case 1: A and B are already in the same cluster.

 Then processing the pair AB does not require any change to the dendrogram as they are already

clustered with their maximum similarity value. Therefore we only need to consider CD, in which case, it

does not matter if AB or CD appears first in L. Similarly this case holds if C and D are in the same cluster.

Case 2: A = C (or A = D or B = C or B = D)

 Assume that AB and CD pairs have the similarity values ‘S’ and we first process the pair AB. Then

we first merge the clusters of A and B to form a single cluster with the similarity value ‘S’. Since A = C,

processing CD, is equivalent to processing a pair AD; therefore the result is a dendrogram composed of

merging the clusters of A, B and D at the same similarity value S.

 Now let’s assume we first process CD which is equivalent to AD, i.e. we merge the clusters of A

and D at the similarity value S. Then, we process AB resulting in merging the clusters of A, B and D at the

same similarity value S.

 In both cases, we just connect the three separate dendrograms corresponding to the clusters of

A, B and C at the similarity value S; therefore the resulting structure is independent of the processing

order.

Case 3: A ≠ C and A ≠ D and B ≠ C and B ≠ D

 Then, the two clustering operations for processing AB and CD are operations performed on two

separate dendrogram pieces (or sub-trees) that are not yet connected at a common similarity value.

Therefore, the processing order does not matter.

Kaan Onarlıoğlu

March 17, 2009

13

=> Processing AB and CD in either order results in the same dendrogram structure.

=> Swapping adjacent similarity pairs does not affect the final dendrogram structure.

Since we can obtain any ordering of the similarity pairs by a number of subsequent adjacent pair swaps

(proof is trivial and is omitted), and since swapping adjacent pairs does not affect the cluster structure,

single-link cluster method is order independent.

b. Consider the similarity matrix:

S =

Let’s consider the non-zero similarity coefficients in this order:

1) S12 = 0.60

2) S23 = 0.60

3) S34 = 0.40

Then, the resulting dendrogram is,

However, if we process the same coefficients in a different order, as follows,

1) S23 = 0.60

2) S12 = 0.60

3) S34 = 0.40

Then, the resulting dendrogram is,

Clearly, the complete-link clustering method is order-dependent.

d1 d2 d3 d4

0.40 0.60

0.00

0.00

0.60

d1 d2 d3 d4

Kaan Onarlıoğlu

March 17, 2009

14

9. a. There are several types of classification:

 1. Based on the classification task:

 i. Subject classification: Documents are classified according to their topics

 ii. Functional classification: Documents are classified according to their roles

iii. Sentiment classification: Documents are classified according to the point of view

presented

 iv. Many other application specific classifications, e.g. genre, spam classification

 2. Based on the number of classes available:

i. Binary classification: There are only two classes to classify the documents

ii. Multi-class classification: There are more than two classes available for the

classification

3. Based on the number of classes each document can be assigned to:

 i. Single-label classification: Each document can be assigned to exactly one class

 ii. Multi-label classification: Each document can be assigned to one or many classes

4. Based on the type of class assignment:

i. Hard classification: Each document is either assigned to a class or not; there cannot be

an intermediary state

ii. Soft classification: Each document is predicted to be in a class with a probability of

assignment

5. Based on the organization of the classes:

i. Flat classification: All the classes are considered to be at an equivalent level; there is

no hierarchical organization among them

ii. Hierarchical classification: Classes are organized as a tree-like structure; classes may

have sub-classes

b. Web classifications are useful in several application areas.

1. Web directories that are mostly maintained manually by human editors can be automatically

generated and updated by creating classifiers using user specified hierarchies.

Kaan Onarlıoğlu

March 17, 2009

15

2. The quality of web search results could be enhanced by classifying web documents and

providing specific search classes with the queries. Additionally, results of regular searches can be

presented in categories for a more efficient human-computer interface.

3. The performance of question answering systems could be increased by classifying the

retrieved web documents using functional classification techniques to identify topic pages that

may contain the relevant answers.

4. Focused crawlers, in other words crawlers that only visit pages relevant to a specific topic, can

make use of classifiers to evaluate the relevance of the pages for crawling.

5. Web content filtering, assisted web browsing and contextual advertising applications can be

enhanced by using web classification.

c. According to the authors, Web classification and text classification differ in the following three

aspects:

1. While regular text documents are usually well-structured and written in a consistent style,

Web documents need not have any such structure.

2. Web documents contain HTML markup for formatting and rendering purposes, whereas text

documents do not.

3. Web documents are linked to many other documents through hyperlinks, which establish the

“web” structure. Such a property is not common in text documents.

