Evaluating Evaluation Measure Stability by Chris Buckley and Ellen M. Voorhees

presenters: Sefa Kılıç and Anıl Türel

April 15, 2010

Introduction

- Three rules-of-thumb
 - Reasonable number of queries.
 - Reasonable evaluation measure.
 - Average Precision
 - R-Precision
 - Precision(20).
 - Threshold for method comparison.
- The paper examines these three rules-of-thumb.

Error Rates for a Variety of Measures

Measure	Error Rate (%)	Std. Dev. (%)	Ties (%)
Prec(1)	14.3	1.3	23.4
Prec(10)	3.6	0.9	24.3
Prec(30)	2.9	0.8	23.8
Prec at .5 R	2.2	0.5	11.4
Prec(100)	1.8	0.5	20.7
Ave Prec	1.5	0.4	12.8
R-Prec	1.3	0.4	19.1
Prec(1000)	1.0	0.4	22.5
Recall(1000)	0.6	0.2	20.8

Figure: Error rate was computed using a fuzziness factor of 5%.

Varying topic set size

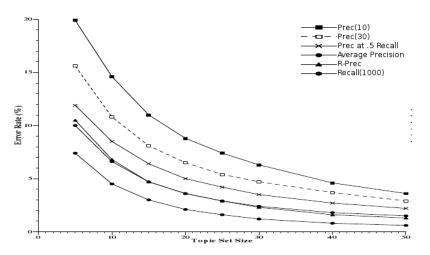


Figure: Average error rate of evaluation measures for varying topic set size

Varying fuzziness values

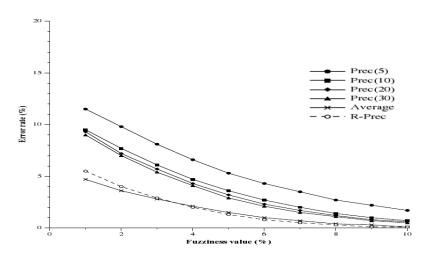


Figure: The effect of fuzziness value on average error rate

Conclusion

- Compare two methods given
 - the number of queries
 - evaluation measure
 - difference threshold

Conclusion

- Some evaluation measures are inherently more stable than others.
 - Precision(1000) is more stable than Avg. Precision.
 - Avg. Precision is more stable than Precision(10).
 - They suggest Avg. Precision.
- Using more queries is more reliable than using fewer queries.
- Requiring a larger threshold between methods increases reliability.
 - But decreases the discrimination between methods.