CS 533 Assignment #6

Abdullah Bulbul

Q1)

a) Cover coefficient based

D matrix =
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
, all α values are ½

$$S, S^{-1} = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix} \quad \Rightarrow \qquad C = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix} \Rightarrow n_c = 2$$

without term1 or term2

D matrix =
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 , all α values are $\frac{1}{2}$

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix}, S^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix} \Rightarrow C = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix} \Rightarrow n_{c1} = 3$$

term3 and term4 give a similar situation.

For terms 2, 3, and 4 number of clusters are 3 and TDV is -1 (=2-3).

So, TDV array =
$$[-1,-1,-1,-1]$$

b) Similarity based

$$S = \begin{bmatrix} 1 & 1 & 0 & 0 \\ \times & 1 & 0 & 0 \\ \times & \times & 1 & 1 \\ \times & \times & \times & 1 \end{bmatrix} \Rightarrow Q = 1/3$$

without t1 (also without t2, t3, or t4) the similarity matrix and Q_1 are the same.

So, TDV array =
$$[0,0,0,0]$$

Q3)

a) Sistrings:

1: 011011100010111000 2: 11011100010111000 3: 1011100010111000 4: 011100010111000 5: 11100010111000 6: 1100010111000 7: 100010111000

9: 0010111000 10: 010111000 11: 10111000

8: 00010111000

12: 0111000

11

3 6

1

PAT Tree

PAT array =
$$[8, 9, 10, 1, 4, 12, 7, 11, 3, 6, 2, 5]$$

b) We can get the indices of A and B using the PAT tree. Then the pairs of indices corresponding to A and B positions which has a smaller difference than d

$$d = 20 + length of A, for A<20>B$$

$$d = 20 + length of B, for B<20>A$$

should be retrieved.

Q5)

10240 documents

signature size = 192 bits

a) Sequential signature file:

Number of pages to keep signature files
$$=\frac{10240\times192}{0.25\times8\times1024}=960$$

All pages should be accessed, so the answer is 960

b) Bit-sliced signature file:

For a single bit of signature 10240 bits are needed. (one for each document)

A single bit can be kept in
$$\frac{10240}{0.25 \times 8 \times 1024} = 5$$
 pages.

We need 5 page accesses for each bit of query. So number of page accesses is 5 * 5 = 25.

a)

S1: 0110 1100 S2: 1010 0011 S3: 0011 1100 S4: 0000 1111 S5: 1011 0100 S6: 0100 1011

00	01	10	11
S3,S4	S1,S6	S2,S5	-

b)

	activated parts	PAR	SAR
Q1: 0001 1110	4, all	4/4	6/6
Q2: 1001 1100	2, (10,11)	2/4	2/6
Q3: 0011 0011	4, all	4/4	6/6
Q4: 1100 1100	1, (11)	1/4	0/6

Q9)

a)

P1 a, e, g P2 a, c P3 a, b, d P4 d, e, f P5 e, f

b) a, e, f, g, b (a, e, g, f are already P1 and P5, if the other term was c P2 would have been satisfied too, so it is b)

c)

d) Only the indicated subtree (on the right) should be searched

