
Retrieving Records from a Gigabyte of Text on a
Minicomputer Using Statistical Ranking
Harman & Candela

Berk KARAOĞLU
Can Çağdaş Cengiz

Thursday, March 8, 12



introduction
previous studies, problems, and aim of this research

Thursday, March 8, 12



introduction

Not a new concept; even in 1990s.

Was a research success.

statistical based ranked retrieval of records using keywords 

But;
not efficient enough for large systems.
no proof that statistical ranking can be done in real-time on large databases

Thursday, March 8, 12



introduction

areas of this research

producing very efficient indexing
and searching algorithms

preliminary design of interfaces
to allow user testing.

Thursday, March 8, 12



introduction
past work in statistical ranking

automatic indexing

automatically retrieving the matched records, and
ranking according to their relevance.

Thursday, March 8, 12



introduction
current approach in statistical ranking (actually, 1990s)

uses same similarity measures and term weighting functions
as past experiments.

assign a ranking weight.
(frequency of query terms and the distribution within the database)

approach

approach tf * idf
(term frequency * inverse document frequency)

Thursday, March 8, 12



Agenda

Indexing
methods used to create the inverted files

Searching
search techniques and enhancing response times

Testing
response time against large databases

Thursday, March 8, 12



indexing
Traditional automatic indexing

1- Parse the input text
2- Invert the list
3- (Optional) Post-processing 

minicomputers cannot handle sorting large databases

the storage amount is relatively small

solution

problem

problem

skip the sorting step. produce the basic inverted file.
add the term weights and reorganize.

Thursday, March 8, 12



searching
Traditional retrieval process

1- Retrieve all records containing the search terms
2- Compute total weight for each of those retrieved records
3- Sort the records

process is dependent on the number of records retrievedproblem

solution create a hash table to accumulate the total record weights

Thursday, March 8, 12



searching
search engine

Reserve a block of storage

Do a binary search

Get the address of the postings list

Add the term weight for each record id to the storage (do for each term in the query)

Sort each accumulator having non-zero weight

Thursday, March 8, 12



searching
ways of further improving the search times

approach

approach

bitmapping
(bitmap the posting lists having more than 44 records.)

pruning
(eliminate the documents having lower relevance threshold)

Thursday, March 8, 12



testing
did the search engine perform fast enough to satisfy online use?

did the ranking produce satisfactory results for the users?

what kinds of problems need to be addressed to produce a truly usable 
retrieval system?

Thursday, March 8, 12



testing

Size of the database 268 MB 806 MB

Avg. response time
per query 2.6 4.1

Avg. response time 
(bitmapping) 1.8 -

Avg. response time 
(pruning) 1.1 1.6

Thursday, March 8, 12



conclusion

Search engine was built.

Previous indexing methods were implemented.

Testing

Bitmapping & Pruning

It is proved that this approach can be used in minicomputers
with large databases.

Create a user interface.

Thursday, March 8, 12


