MUSIC INFORMATION CLASSIFICATION

PROGRESS PRESENTATION BY

M.BERKAN ERCAN

A SHORT REMINDER

Music Information Retrieval (MIR), is related with extracting information from music data.

The data can be;

- Genre
- Timbre
- Lyrics
- Mood
- Pitch Sounds
- Tempo...

THE PROJECT

- The aim was to create a map of meodies around Turkey.
- To match the given composer and region information to the songs in the training dataset. (1300 Turkish folk songs)
 - Find unique representation of the melodies
 - So the proposed system will be able to identify a novel melody's origin.

THE FIRST CHALLENGE

Feature Extraction is the first step in an MIR system.

One of the possible methods;

- MFCC
 - Defining frames on the music data and extracting Mel-Frequency Cepstral Coefficients.

- In order to perform MFCC, first we have use FFT.
- Next, the results are compared with the Mel-scale.

THE FIRST CHALLENGE (CONT.)

The other possible way is to divide the melody into chunks and appy FTT directly.

• Commercial products working this way(Shazam)

THE PROGRESS

The progress can be categorized as follows;

- Get the audio file from microphone (10 sec)
- Divide it into chunks of 4096 bytes
- Apply FFT to each chunk in order to switch from timedomain to frequency domain.
- Create a unique representation from the frequency distribution of the melody.

AUDIO DATA IN TIME DOMAIN

-1 -1 -1 -1 -1 -1 00000011111222233334444455555556666666 5555555444433332221100-1-1-2-2-3-4-4-5-6-6-7-7-8-9-9 -10 -10 -10 -11 -11 -12 -12 -12 -12 -13 -13 -13 -13 -13 -13 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -15 -15 -15 -15 -15 -15 -14 -14 -14 -14 -14 -14 -13 -13 -13 -12 -12 -12 -11 -11 -10 -10 -10 -9 -9 -8 -8 -8 -8 -7 -7 -7 -7 -7 -6 -6 -6 -6 -5 -5 -5 -5 -4 -4 -4 -3 -3 -3 -2 -2 -1 _1 _1 0 0 1 1 1 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 6 7 7 7 8 8 8 8 9 9 9 10 10 10 10 11 11 11 10 10 9 9 9 9 8 8 8 8 7 7 7 6 6 6 5 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 1 0 0 0 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 -4 -4 -4 -5 -5 -5 -5 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -8 -8 -8 -8 -8 -8 -8 -10 -10 -10 -10 -10 -10 -9 -9 -9 -9 -9 -8 -8 -8 -8 -7 -7 -7 -6 -6 -6 -5 -5 -5 -4 -4 -3 -3 -2 -2 -1 -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9 10 10 10 10 11 11 11 11 11 12 -2 -3 -4 -4 -5 -6 -7 -8 -9 -10 -10 -11 -12 -13 -13 -14 -15 -15 -16 -16 -17 -17 -17 -18 -18 -18 -18 -18 -19 -19 -19 -19 -19 -19 -19 -19 -19 -20 -20 -20 -20 -20 -20 -20 -19 -19 -19 -19 -18 -18 -18 -17 -17 -16 -16 -15 -15 -14 -14 -13 -13 -12 -12 -12 -11 -11 -10 -10 -10 -9 -9 -9 -8 -8 -8 -7 -7 -7 -6 -6 -5 -5 -4 -4 -3 -3 -2 -1 -1 0 0 1 2 2 3 3 4 4 4 5 5 6 6 6 7 7 199988877766555443332211100-1-1-1-2-2-2-3-3-3-4-4-5 4.04

AUDIO DATA IN TIME DOMAIN

AUDIO DATA IN THE FREQUENCY DOMAIN

948++2.65381945354521315.6124675789582525++3.44225191499112351-15.962387688551187++16.6524 45145955984i-13.644264478363375+8.11451368508617i8.02243935100903+15.92338005918808i1.5591 326136245804+22.68539870303985i3.997279228103669+23.59786119446335i-0.601855269247594+-3.6 0293509109934714.28603732971092+4.847583938071533513.451909040730163+8.689348114980431-8.94970421946601+3.3440580221847496i=10.803491707593333+5.314866399034624i2.0884592863849445+ -12.788370247026581-4.278293073906549+-10.9101311899795311.872605354119342+5.0829851269153 82i_3_0018294335187403+_3_060584574324885i_7_013267178441071+_8_448695316507273i_10_122371 981417406782484i-7.132531566545009+4.358817770713371i-6.309266788495093+9.493441683340286i -3-5712934775899505+-1-539261227422859i-1-204108276406676+-2-8683643222989765i-4-861007294 961908+13.336184403162493i-6.684635258816556+-4.931856686114808i6.698361531913871+5.34260 9456493071-6.661104212319744+-6.0254748366058431-13.762193533626547+-13.01929450102414512 5328784947848346+2.07083839196977951-9.31293965605973+-0.223604256107861941-16.07493419008 6548+-8.10199310014091i-2.3658401698986147+-4.476963258033653i0.9980792054829202+-4.253536 258707953i4.545917358271472+-14.547655888360765i-12.729534086694455+2.6263711327464563i-2. 8673833478776016+-6.6578563299052721-7.742981868041002+10.095797518824661-19.7166723904442 7+-12.6344448508570221-5.64099101676735+-3.25478907981731421-6.970902962218874+-18.9216272 0033417i-18.58867291679305+9.952739378666884i12.245303953475318+14.552595260151556i0.08436 691165709842+-5.806685858236512.4849805290663487+0.1562968573070935312.61919186122869+-8.9 66469709822755i=17.628068995351143+=12.1326558203357ti=21.595882710956893+=5.0277646576208 92i_1_0061810134614624+17_51551072367363i12_298314549566676+_8_261736431031267i0_480603148 2929285+-11.795537728444536i-14.47437643214093+-8.570305842753202i-6.434253665391384+-14.2 9230334800231i-12.835266194584165+0.0015641848492187194i-1.1728514399235266+4.395360945622

CREATING THE UNIQUE REPRESENTATION

- After obtaining the frequency distribution of the melody (with FFT),
 - Choose frequency intervals. (0-40, 40-80, 80-120, 120-180, 180-UPPER_LIMIT)
 - For each frequency interval, find the biggest magnitude.
 - In total we'll have 5 numbers which are the peak frequencies for a certain frequency interval.
 - This will be used as the unique representation of the melody.

32	41	106	161	191	
33	76	95	123	185	
40	68	110	134	232	
30	62	88	125	194	
34	57	83	121	182	
34	42	89	123	182	
33	56	99	121	195	
30	41	84	146	199	

CREATING THE UNIQUE REPRESENTATION

- Put the song name, region and the composer in hashTable
- The hash key (example peak magnitudes: 32 41 106 161 191)
 - 3141106161191

In short, so far what I have done is to convert the audio file into a 10 digit number.

STEPS TO FOLLOW..

The future work is as follows;

- Index all the songs in the database and obtain that 10 digit unique (hopefully) key.
- Error tolerance helps to increase the match results
 - Accept any number as same within a certain range.
 - Ex: 17 = 19 (since they are both inside the 14-20 interval)
- Adding learning algorithms for the songs which are novel
- Deciding on weighting system
- Deciding on a similarity calculation method.

CONCLUSION

- Creating the map of melodies require;
 - Divide songs into chunks, apply FFT, obtain frequency domain representation.
 - For a couple of frequency intervals, find the peak frequency value.
 - Use those values as the hash key.
 - Train the data
 - Detect novel data

QUESTIONS?