LocAndFeel

Location-Based Tweet Retrieval and Sentimental Analysis for Turkish

Mert Emin Kalender, Havva Gulay Gurbuz, Fatma Balci, Elif Dal

May 2, 2013

Outline

- Introduction
- Tweets as Data Source
- Methodology
- Classification
- Evaluation
- Tool
- Conclusion
- References

Introduction

- Social services
 - rapid growth
 - mass adoption
- Twitter
 - microblogging service
 - messages up to 140 characters
- As of June 2012 [1]
 - more than 517 million users
 - generating billions of tweets per month

Tweets as Data Source

- Various use cases [2]
 - daily updates
 - conversations
 - information sharing
 - news reporting
 - commentary on news and events
- Valuable source of data
 - public opinion on products, services etc.
 - details about recent events, emergencies with geographical information [3]

Methodology

Gathering Data

- 1,392,556 tweets gathered
 - 696,278 positive and 696,278 negative
- Emoticons as (noisy) labels
 - :), ;), :D, :)) etc. for positivity
 - :(, :'(, :((etc. for negativity
- Data characteristics
 - average length 61 characters, 8 words
 - tweets from publicly accessible profiles
 - between April 13, 2013 and April 20, 2013

Methodology

Feature Reduction

- tweet as bag-of-words
 - a set of steps applied in terms of feature reduction

Reduction Step	Feature Size	Percent of Original	
None	1,619,858	100.00%	
Emoticons	1,498,479	92.50%	
Usernames	1,117,533	68.98%	
Links	1,027,994	63.46%	
Hashes	1,016,681	62.76%	
Other Reductions	598,782	36.96%	
Stemming	150,696	9.30%	

Classification

- Naive Bayes (NB) [4]
 - simple and reasonable in terms of performance
 - assumes features are independent
- Maximum Entropy (ME) [5]
 - similar to Naive Bayes
 - no assumption on feature independence
- Support Vector Machines (SVM) [6]
 - universal learners
 - ability to learn independent of feature space size

Evaluation

Classification Accuracies

- Test Data
 - manually marked 143 negative, 125 positive tweet
- Accuracy around 80%
 - similar to [7]
 - less than [6] (reported 90%)

Min. Frequency	NB	ME	SVM
1	79.1%	81.7%	79.4%
2	78.7%	81.3%	79.4%
3	78.7%	80.6%	79.4%
4	78.4%	80.6%	
5	78.4%	79.9%	77.6%

Evaluation

Limitations

- Use of language
 - casual
 - contains grammatical mistakes
- Labels
 - emoticons
- Stemming
 - specific stemming approach

Tool

Web application

- Turkish and English (Python NLTK API)
- analysis on different result types
 - recent tweets
 - popular tweets
 - mixed
- specifying location via Google Maps API
- Demo (<u>link</u>)

Conclusion

- Vast usage of Twitter
 - tweets as valuable data sources
- Emoticons as label for training data
 - more than one million tweet collected
 - cleaned and refined via feature reduction steps
 - classified with three different Machine Learning algorithms
 - achieved 80% accuracy

References

- [1]: I. Lunden. Analyst: Twitter passed 500m users in june 2012, 140m of them in us; jakarta 'biggest tweeting' city @ONLINE, July 2012.
- [2]: A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, WebKDD/SNA-KDD '07, pages 56–65, New York, NY, USA, 2007. ACM.
- [3]: D. Maxwell, S. Raue, L. Azzopardi, C. Johnson, and S. Oates. Crisees: Real-time monitoring of social media streams to support crisis management. In Advances in Information Retrieval, pages 573–575. Springer, 2012.
- [4]: B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, pages 79–86. Association for Computational Linguistics, 2002.
- [5]: K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classification. In IJCAI-99 workshop on machine learning for information filtering, volume 1, pages 61–67, 1999.
- [6]: T. Joachims. Text categorization with support vector machines: Learning with many relevant features. Springer, 1998.
- [7]: A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, pages 1–12, 2009.

Thanks

Questions? Comments?