

CS533-Information Retrieval Systems

A Language Modeling Approach to Information Retrieval

Ponte & Croft

Mehmet Ali ABBASOĞLU Gülsüm Ece BIÇAKCI

Document indexing & retrieval

Difficult

Reason: lack of indexing model

Introduction

Introduction

Approach to Retrieval

Estimate the probability of generating query

Rank the documents to these probabilities

Introduction

- Term frequency
- Document frequency
- Document length statistics

integral part of the model, but not used heuristically

2- Poisson

- a subset of terms occuring in a document

Robertson & Sparck Jones – Croft & Harper

- estimate the probability of the relevance of each document to the query

Fuhr

- integration of indexing and retrieval models

INQUERY inference by Turtle & Croft

- making inferences of concepts from features

Model Description

- Aim is to estimate p(Q | M_d), probability of the query given the language model of document d.
- They define maximum likelihood estimate of the probability of term t

$$\hat{p}_{ml}(t|M_d) = \frac{tf_{(t,d)}}{dl_d}$$

Model Description

- For non-occuring terms instead of taking P_{ml}=0, they take c_{ft} / c_s
- For the situations that arbitrary sized sampled data, maximum likelihood estimator could be reasonably confident. To estimate larger amount of data:

$$\hat{p}_{avg}(t) = \frac{\left(\sum_{d_{(t \in d)}} p_{ml}(t|M_d)\right)}{df_t}$$

Model Description

• They define risk as

$$\hat{R}_{t,d} = \left(\frac{1.0}{(1.0 + \overline{f}_t)}\right) \times \left(\frac{\overline{f}_t}{(1.0 + \overline{f}_t)}\right)^{tf_{t,d}}$$

They define p(Q | M_d) as

$$\hat{p}(Q|M_d) = \prod_{t \in Q} \hat{p}(t|M_d)$$
$$\times \prod_{t \notin Q} 1.0 - \hat{p}(t|M_d)$$

Results

- They performed recall / precision experiments on two data sets
 - TREC topics 202-250 on TREC disks 2 and 3, TREC 4 ad-hoc task
 - TREC topics 51-100 on TREC disk 3 using concept fields.
- Implementation is done using *Labrador* information retrieval engine.

Results

- On the eleven point recall/precision:
 - The language modeling approach achieves better precision at all levels of recall.
 - Most of the improvements are statistically significant according to *Wilcoxon* test.

Conclusion

- They presented a novel way of text retrieval based on probabilistic *language modeling*.
- Their language models are accurate representations of the data
- They claim that
 - Users of their methodology can understand their approach to retrieval.
 - Users also will have some sense of term distribution.
- Their language modeling has significantly better recall/precision results than *INQUERY*.

