IR Evaluation Methods for Retrieving Highly Relevant Documents

What is the Problem ?

Traditional IR Evaluation Methods categorizes documents as **relevant** or **irrelevant**. With these two values we cannot evaluate the system by its ability to retrieve most relevant documents.

What is Proposed ?

This paper proposes evaluation methods which uses **multiple relevance levels** so that we can evaluate IR system better.

For instance, relevance **level 0** for not relevant documents. Relevance **level 1** for marginally relevant documents, relevance **level 2** for fairly relevant documents and **level 3** for mostly relevant documents.

Two methods are proposed which are :

- P R Curves for each relevance level with separate recall base and
- Cumulative gain and Discounted cumulative gain vectors.

We are using **3 relevance level**. (Level 0 is ignored since it is irrelevant)

We are using **3 query types** SUM, SSYN-C, WYSN. We are also using **query expansion** on these query types. Therefore, total of **6 query types** are used in case study.

P – R Curves

We are using classic P – R curves for each relevance level with separate recall base.

This way we can see the difference in performance better.

6 query types are used.

Cumulative Gain and Discounted Cumulative Gain

Highly relevant documents are more important than marginally relevant documents.

Thus, as we increase the rank, naturally the documents become less important.

We can do it by **adding their relevance level to each other** and calculating a Cumulative Gain. In this way, if we retrieve highly relevant documents, we add more to cumulative gain which means next document becomes less important.

However, **rank 1** highly relevant document and **rank 100** highly relevant document **contributes same to this cumulative gain**. To prevent that, we use **discounting function** such as log function to reduce the effect as the rank increases.

Case Study

- Mostly relevant documents really benefit from strongly typed queries
- Expansion on strongly typed queries increase the precision value in P R curves
- Strongly typed queries with expansion are twice more effective than other query types.
- As we increase the relevance level, CG and DCG value differences between queries becomes proportionally larger.